Abstract
Purpose: Through comprehensive bioinformatics analysis based on the immune microenvironment, this study aimed to identify immune-related RNA biomarkers that indicate aneurysmal subarachnoid hemorrhage (aSAH).
Methods: The GSE73378 dataset was downloaded from the National Center for Biotechnology Information GEO database, providing blood from 107 normal controls and 103 patients with aSAH. The immune infiltration types in the aSAH blood samples were assessed and RNAs that were differentially expressed (DE) between 1) the aSAH and control groups and 2) the immune infiltration groups (high and low) were identified. The intersecting genes were subjected to weighted gene co-expression network analysis followed by co-expression network construction. The aSAH-related genes and pathways were identified from the Comparative Toxicogenomics Database: update 2019.
Results: A total of three DE long non-coding RNAs (lncRNAs) and 301 DE mRNAs were identified. Of the 301 mRNAs, 91 were significantly enriched in three modules. Based on the 91 mRNAs and three lncRNAs, a co-expression network related to the disease pathway was constructed. This pathway consisted of 16 factors, including the 13 mRNAs (e.g., TNFSF13B, TNFSF10, MYD88, GNA12 and NSMAF) and three lncRNAs (FAM66A, LINC00954 and CELF2-AS2), as well as six pathways, including the NF-κB, toll-like receptor, and sphingolipid signalling pathways.
Conclusion: TNFSF13B, MYD88, GNA12, NSMAF, FAM66A, LINC00954 and CELF2-AS2 may serve as biomarkers for aSAH. The NF-κB, toll-like receptor and sphingolipid signalling pathways may play critical roles in the progression of aSAH.
Publisher
University of Toronto Libraries - UOTL
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献