Identification Of Putative Gene Signatures Associated With Diagnosis And Prognosis Of Breast Cancer

Author:

Tan Chao,Zuo Fang,Lu MingqianORCID,Chen Sai,Tian Zhenzhen,Hu Yong

Abstract

Purpose: This study aimed to identify potential diagnostic and therapeutic biomakers for the development ofbreast cancer (BC). Methods: GSE86374 dataset containing 159 samples was acquired from the Gene Expression Omnibus (GEO) database followed by differentially expressed genes (DEGs) identification and cluster analysis. Corresponding functional enrichment and protein-protein interaction (PPI) network analyses were performed to identify hub genes. Prognostic evaluation using clinical information obtained from TCGA database and hub genes was conducted to screen for crucial indicators for BC progression. The risk model was established and validated. Results: In total, 186 DEGs were identified and grouped into four clusters: 96 in cluster 1; 69 in cluster 2; 16 in  cluster 3; and 5 in cluster 4. Functional enrichment analysis showed that DEGs, including ADH1B in cluster 1,  were dramatically enriched in the tyrosine and drug metabolism pathways, while genes in cluster 2, including  SPP1 and RRM2, played crucial roles in PI3K-Akt and p53 signalling pathway. SPP1 and RRM2 served as hub  genes in the PPI network, resulting in an support vector machine classifier with good accuracy and specificity.Ad ditionally, the results of prognostic analysis suggest that age, metastasis stage, SPP1 and ADH1B were correlated with risk of BC, which was validated by using the established risk model analysis. Conclusion: SPP1, RRM2 and ADH1B appear to play vital roles in the development of BC. Age and TNM stage  were also preferentially associated with risk of developing BC. Evaluation of the risk model based on larger sample size and further experimental validation are required.

Publisher

University of Toronto Libraries - UOTL

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3