Antagonistic activities of mycoparasitic Pythium species against Fusarium oxysporum f. sp. lycopersici and Botrytis cinerea on tomatoes

Author:

Ateş Meryem1ORCID,Hatat Karaca Gürsel2ORCID

Affiliation:

1. SULEYMAN DEMIREL UNIVERSITY

2. ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ

Abstract

In this study, antagonistic effects of Pythium acanthophoron, P. lycopersicum, P. oligandrum and P. paroecandrum against Fusarium oxysporum f. sp. lycopersici and Botrytis cinerea were investigated by in vitro and in vivo trials. In vitro mycoparasitic activities of Pythium species were determined by dual culture, inverted plate culture and agar diffusion tests. As a result of dual culture tests, suppressive effects of all mycoparasites were over 70% against mycelial growth of the pathogens. Inverted plate tests showed that antagonistic effects of mycoparasites regarding their volatile compounds were rather low. In the agar diffusion test, all mycoparasites showed antibiosis effect, however P. lycopersicum had the highest suppressive effect on both pathogens. In pot trials, mycoparasites were effective to protect tomato seedlings when pathogens were seperately inoculated, and suppressed the symptoms. When two pathogens were inoculated together, P. paroecandrum was ineffective against B. cinerea, but decreased the severity of wilt symptoms, while other mycoparasites totally inhibited both diseases. Chromatographic analyses made by using leaf samples taken 12, 24, 48 and 72 hours after pathogen inoculation showed meaningful increase on chlorogenic acid, caffeic acid and epicatechine, in the samples taken 48 hours after inoculation. Analyses after the inoculations of tomatoes with the mycoparasites and/or pathogens showed that mycoparasites also caused increase in the amounts of phenolics. This indicated that the mycoparasites could be effective to induce defense mechanisms of tomato plants against pathogens. Among them, P. oligandrum can be mentioned as the most effective mycoparasite regarding the induction of phenolics.

Funder

Süleyman Demirel University

Publisher

International Journal of Agriculture Environment and Food Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3