Chemo-enzymatic synthesis of chiral precursor molecules with chiral ring hydroxyenone and acetoxyenone structures

Author:

BECEREKLİ Hatice1ORCID,SOPACI Şaziye Betül2ORCID

Affiliation:

1. BATMAN ÜNİVERSİTESİ, BATMAN MESLEK YÜKSEKOKULU

2. AHİ EVRAN ÜNİVERSİTESİ

Abstract

A biocatalytic transformation has the potential to perform organic reactions that are quite challenging to achieve with synthetic organic chemistry. They also catalyze these reactions with a chemo and enantio selective manner. The discovery and development of new chemoenzymatic methods for the synthesis of these chiral structures is essential to the production of a wide range of bioactive compounds. In this study, two important pharmaceutical precursors were synthesized chemoenzymatically and subjected to biocatalytic conversions with different dehydrogenases. One of these compound is an α-acetoxy enone structure 4-methoxy-2-oxacyclohex-3-enyl acetate and the other is an α-hydroxy ketone 6-hydroxy-3-methoxycycyclohex-2-enone. To obtain these pharmaceutical precursors, 3-methoxy-cyclohex-2-enone was prepared using 1,3-diketone as a starting material. After obtaining this material, α-acetoxy enone was synthesized by chemical acetylation and α-hydroxy ketone prepared by enzymatic deacetylation. The structure of these products was elucidated by NMR analysis. In addition, biocatalytic reduction reactions involving the enzymes galactitol dehydrogenase (GatDH), shikimate dehydrogenase (SDH) and diaphorase were carried out with these products.

Publisher

International Journal of Agriculture Environment and Food Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3