Abstract
Firms selling commercial vehicles often face difficulties due to recessions in the globalized economy. Manufacturers are keen to anticipate demand in future quarters to optimize their production schedules. In this study, commercial vehicle production data from a leading Indian automotive manufacturer were analyzed us- ing moving averages, exponential smoothing, seasonal decomposition and autoregressive integrated moving average (ARIMA) models with the goal of forecasting. The results reveal that the ARIMA (0,1,1) model effectively predicts the sectoral downturn coinciding with the global financial crisis of 2008. As life returns to normal after the financial crisis caused by COVID-19, such models may be used to strategically move past the disruption.
Publisher
University of Economics and Human Sciences in Warsaw
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献