Carbon Dioxide Sequestration and Hydrocarbons Recovery in the Gas Rich Shales: An Insight from the Molecular Dynamics Simulations

Author:

Pathak Manas1,Pawar Gorakh1,Huang Hai2,Deo Milind D.1

Affiliation:

1. University of Utah

2. Idaho National Laboratory

Abstract

Abstract Recent technological advances like horizontal drilling and hydraulic fracturing have made recovery of gas possible from the ultra low permeable shale plays in the United States. However, recoveries from these gas shales still tend to be in the range of single digits. It is believed that more than 80% of the generated hydrocarbons still remain in these tight formations. In order to increase the recovery from these tight shale plays, an enhanced recovery procedure using supercritical carbon dioxide as the injection fluid is recommended in this paper. In the current research, molecular dynamics simulations (MDS) have been performed on the kerogen-methane-carbon dioxide system to understand the absorption-adsorption-desorption phenomena of the super critical carbon dioxide fluid. Previous studies have confirmed that the kerogen has a tendency to adsorb and absorb the hydrocarbons. In the current work, the type II kerogen model was chosen and annealed with the methane molecules. The Nose-Hoover style non-Hamiltonian equations of motion were used in a molecular simulator to generate positions and velocities sampled from the canonical (nvt) and isothermal-isobaric (npt) ensembles. This updates the position and velocity for atoms in the group each time step during the simulations. The pairwise distribution function and density of the mixture were calculated at the end of the simulations in order to validate the model with the experimental observations. The subsequent simulations with the carbon dioxide molecules in the periodic boundary conditions reveal that the carbon dioxide can sweep the absorbed methane from the kerogen matrix in the shales. The interactions at the interface between the carbon dioxide and the methane rich kerogen matrix are studied. These replicate the interactions at the fracture surface in the process of using super critical carbon dioxide as the fracturing fluid for enhanced gas recovery. Compared to methane, the carbon dioxide molecule has higher affinity to be adsorbed and eventually absorbed in the kerogen matrix because of its polar nature and linear shape. This allows the carbon dioxide to replace methane in the kerogen, thereby, sequestrating itself in the kerogen rich shale formations. Adsorption and absorption of the carbon dioxide in turn cause desorption of the methane from the kerogen, which aids in the gas recovery from such gas rich shales as the Marcellus Shale in the United States.

Publisher

CMTC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3