A Systematic Reservoir Simulation Study on Assessing the Feasibility of CO2 Sequestration in Shale Gas Reservoir with Potential Enhanced Gas Recovery

Author:

Zhan Jie1,Yuan Qingwang2,Fogwill Allan3,Cai Hua4,Hejazi Hossein1,Chen Zhangxin1,Cheng Shiqing5

Affiliation:

1. University of Calgary

2. University of Regina

3. Canadian Energy Research Institute

4. CNOOC Ltd.-Shanghai

5. China University of Petroleum-Beijing

Abstract

Abstract The application of horizontal well drilling coupled with the multistage fracturing technology enables commercial development of shale gas formations, which launches the energy revolution from conventional resources to unconventional resources. With the progress of understanding the nature of shale reservoirs, we find that some shale methane is stored as an adsorbed phase on surfaces of organic carbon. Meanwhile, laboratory and theoretical calculations indicate that organic-rich shale adsorbs CO2 preferentially over CH4. Shale gas reservoirs are recently becoming the promising underground target for CO2 sequestration. In the paper, systematic numerical simulations will be implemented to investigate the feasibility of CO2 sequestration in shale gas reservoirs and quantify the associated uncertainties. First, a multi-continua porous medium model will be set up to present the matrix, nature fractures and hydraulic fractures in shale gas reservoirs. Based on this model, we will investigate a three-stage flow mechanism which includes convective gas flow mainly in fractures, dispersive gas transport in macro pores and multi-component sorption phenomenon in micro pores. To deal with this complicated three-stage flow mechanism simultaneously, analytical apparent permeability which includes slip flow and Knudsen diffusion will be incorporated into a commercial simulator CMG-GEM. A Langmuir isotherm model is used for CH4 and the multilayer sorption gas model, a BET model, is implemented for CO2. In addition, a mixing rule is introduced to deal with the CH4-CO2 competitive adsorption phenomenon. In the paper, an integrated methodology is provided to investigate the CO2 sequestration process. Simulation results indicate that a shale gas reservoir is an ideal target for the CO2 sequestration. Even with the reservoir pressure maintenance due to the injection of CO2, the reservoir productivity is not enhanced. Hydraulic fracking which creates freeways for gas flow is the key to improve the reservoir performance. The multicomponent desorption/adsorption is a very important feature in a shale gas reservoir, which should be fully harnessed to benefit the CO2 sequestration process. In addition, we cannot ignore the contribution of slip flow and diffusion to the reservoir performance. Based on the methodology provided in this paper, we can easily deal with the apparent permeability effect using a commercial simulator platform.

Publisher

CMTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3