Application of Different Python Libraries for Visualisation of Female Genital Mutilation

Author:

Adebanjo Seun,Banchani Emmanuel

Abstract

Utilizing data visualization facilitates the analysis and comprehension of common data provided by the media, individuals, governments, and other sectors. Python is a well-known programming language that excels at scientific data visualization. This thesis utilizes a variety of Python modules, including Pandas, NumPy, Matplotlib, Seaborn, Plotly, and Bokeh, to illustrate female genital mutilation. The purpose of this thesis is to illustrate female genital mutilation and explain its performance pattern using a complex, interactive diagram that integrates multiple types of Python libraries. In comparison to other libraries, Plotly is the simplest, yet it performs at the highest level. NumPy and Matplotlib are combined to produce Hexbins charts. NumPy provides an N-dimensional plot, and Matplotlib allows for the plot's colours to be customized. Despite its limited customization options, the Seaborn library is suitable for both data visualization and statistical modelling. Due to this deficiency, the Seaborn library is frequently combined with Matplotlib to generate superior visualizations. As a result, this thesis will be recommended to both specialists and novices as worthwhile reading. In addition, it will assist the government in drafting legislation to end female genital mutilation. They will comprehend the significance of combining multiple Python modules to generate intricate interactive diagrams for data visualization in the field of data science. This information will be posted online to contribute to the corpus of knowledge.

Publisher

Insight Society

Reference18 articles.

1. Ejoh, A., 2022. [online] View.officeapps.live.com. Available at: [Accessed 15 June 2022].

2. Li, S. (2021). “Leap from Matplotlib to Plotly: Python libraries for beginners in data science”. 43(7): 21-24.

3. Mishra, A. (2019). Data Visualization with Python. Machine learning in the AWS cloud: pp.51-78.

4. Psallidas etal, F. (2019). Data science through the looking glass and what is found there.

5. Stancin, I & Jovic, A. (2019). An overview and comparison of free Python libraries for data mining and big data analysis. PP 977-982.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3