Utilizing Model Residuals to Identify Rental Properties of Interest: The Price Anomaly Score (PAS) and Its Application to Real-time Data in Manhattan

Author:

Sultan Youssef,Rafter Jackson,Nguyen Huyen

Abstract

Understanding whether a property is priced fairly hinders buyers and sellers since they usually do not have an objective viewpoint of the price distribution for the overall market of their interest. Drawing from data collected of all possible available properties for rent in Manhattan as of September 2023, this paper aims to strengthen our understanding of model residuals; specifically on machine learning models which generalize for a majority of the distribution of a well-proportioned dataset. Most models generally perceive deviations from predicted values as mere inaccuracies, however this paper proposes a different vantage point: when generalizing to at least 75% of the dataset, the remaining deviations reveal significant insights. To harness these insights, we introduce the Price Anomaly Score (PAS), a metric capable of capturing boundaries between irregularly predicted prices. By combining relative pricing discrepancies with statistical significance, the Price Anomaly Score (PAS) offers a multifaceted view of rental valuations. This metric allows experts to identify overpriced or underpriced properties within a dataset by aggregating PAS values, then fine-tuning upper and lower boundaries to any threshold to set indicators of choice.

Publisher

Insight Society

Reference14 articles.

1. Census reporter: Manhattan borough, new york county, ny.

2. Quickfacts: New york city, new york.

3. Here are the most affordable nyc neighborhoods for recent college grads, Jun 2023.

4. Nyc residential rental market report: October 2023, Oct 2023.

5. Y. Chen, X. Liu, X. Li, Y. Liu, and X. Xu. Mapping the fine-scale spatial pattern of housing rent in the metropolitan area by using online rental listings and ensemble learning. Applied Geography, 75:200–212, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3