Intra-ply shear characterization of unidirectional fiber reinforced thermoplastic tape using the bias extension method

Author:

Brands Dennis,Grouve Wouter,Wijskamp Sebastiaan,Akkerman Remko

Abstract

Press forming of thermoplastic unidirectional (UD) carbon fiber reinforced laminates is an attractive production method in the aerospace industry for cost-effective manufacturing of high-performance parts. The possible formation of wrinkling defects in the formed parts has led to the development of predictive, finite element based, process simulation tools. The material behavior during the forming process is described based on the governing deformation mechanisms, being intra-ply shear, inter-ply and tool-ply slippage and bending. Intra-ply shear is especially important when forming parts having double curvature. The intra-ply shear behavior of fabric-based composite materials is often characterized using the bias extension method but has not successfully been applied to thermoplastic UD tapes yet. This work describes the application of bias extension experiments on cross-ply UD laminates at forming conditions to characterize the intra-ply shear material behavior. The test procedure was designed to prevent deconsolidation and improve load introduction, promoting specimen integrity and reduce shear buckling during testing. Preliminary results show that the material exhibits rate-dependent behavior. A video extensometer was used to measure the shear deformation in the center of the specimen. Additionally, a deformation analysis was performed using a grid of lines on the specimen, where the theoretical areas of constant shear according to a pin-jointed net can be recognized but are not fully uniform. In particular, shear banding parallel to the fiber direction is observed on the outer ply at a length scale below the grid size used for the deformation analysis suggesting a yield point and softening behavior on the meso scale which is not directly evident from the macroscopic response.

Publisher

University of Liege

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3