Prediction of forming effects in UD-NCF by macroscopic forming simulation – Capabilities and limitations

Author:

Kärger Luise,Galkin Siegfried,Kunze Eckart,Gude Maik,Schäfer Bastian

Abstract

Unidirectional non-crimp fabrics (UD-NCF) provide the highest lightweight potential among dry textile materials. Compared to multiaxial NCF, the fabric layers in UD-NCF enable a more targeted tailoring. Compared to woven fabrics, the fibres of UD-NCF are straight without weakening undulations. However, the formability of UD-NCF is more challenging compared to woven fabrics. The yarns are bonded by a stitching and the deformation behaviour highly depends on this stitching and on the slippage between the stitching and the fibre yarns. Moreover, distinct local draping effects occur, like gapping and fibre waviness, which can have a considerable impact on the mechanical performance. Such local effects are particularly challenging or even impossible to be predicted by macroscopic forming simulation. The present work applies a previously published macroscopic UD-NCF modelling approach to perform numerical forming analyses and evaluate the prediction accuracy of forming effects. In addition to fibre orientations and shear angles, as investigated in previous work, the present work also provides indication for fibre area ratios, gapping, transverse compaction and fibre waviness. Moreover, the prediction accuracy is validated by comparison with experimental tests, where full-field strains of inner plies are captured by prior application of dots onto the fibre yarns, by measuring them via radiography and applying a photogrammetry software. The modelling approach provides good prediction accuracy for fibre orientations, shear strains and fibre area ratio. Conversely, normal fibre strains, indicating fibre waviness, and transverse strains, indicating gapping, show some deviations due to the multiscale nature of UD-NCF that cannot be captured entirely on macroscopic scale.

Publisher

University of Liege

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3