Interaction of capillary and tissue forces in the cat small intestine.

Author:

Mortillaro N A,Taylor A E

Abstract

We measured steady state capillary hydrostatic pressure (P c,i), plasma and lymph protein concentrations, lymph and blood flow, and capillary filtration coefficients in an in situ loop of cat small intestine at venous outflow pressures (PV) of 0, 5, 10, 15, 20, 25, and 30 mm Hg. The data were used to calculate colloid osmotic pressure of lymph and plasma, interstitial fluid pressure (Pt), pre- and postcapillary resistances, and a tissue pressure-volume curve of the intestinal interstitium. When PV was elevated from 0 to 30 mm Hg, lymph protein concentration decreased from 3.8 to 1.9 g/100 ml (representing a change in colloid osmotic pressure of 6.2 mm Hg), lymph flow increased 7-fold (or an equivalent imbalance in Starling forces of 4.3 mm Hg), and the calculated PT increased from 1.8 to +5.3. Because lymph flow draining the loop decreased during the determination of Pc, i at venous pressures between 15 and 30 mm Hg, the corresponding calculated PT may be in error by 1-2 mm Hg. The tissue pressure-volume relationship calculated from the data indicates that the intestinal interstitial volume expands nonlinearly and this expansion is characterized by two distinctly different compliant components: (1) tissue compliance is low at PV between 0 and 15 mm Hg (0.4 ml/mm Hg), and (2) at PV greater than 15 mm Hg the tissue compliance is relatively high (4 ml/mm Hg). We found that when PV was elevated from 0 to 15 mm Hg, increases in PT are the major tissue adjustments that oppose the increased filtration pressures. Furthermore, at Pv of 20-30 mm Hg, tissue protein concentration decreases, lymph flow relative to the filtration coefficient (deltaP DROP) increases and, to a much lesser extent, PT increases. Finally, the combination of these changes in tissue force at high filtration pressures represent a maximum tissue edema "safety factor" of 10 mm Hg; further increases in filtration pressures result in large volume movements into the intestinal lumen.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference26 articles.

1. On the Absorption of Fluids from the Connective Tissue Spaces

2. Exchange of substances through the capillary walls. In Handbook of Physiology, section 2, Circulation, vol II, edited by WF Hamilton, P Dow Washington, D.C;Landis EM;American Physiological Society,1963

3. Pappenheimer JR Soto-Rivcra A Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs Am J Physiol 152:471-491 1948

4. Relation between venous pressure and blood volume in the intestine;Johnson PC;Am J Physiol,1963

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Modern View of the Interstitial Space in Health and Disease;Frontiers in Veterinary Science;2020-11-05

2. Gastrointestinal Blood Flow;Yamada' s Textbook of Gastroenterology;2015-11-27

3. The Gastrointestinal Circulation: Physiology and Pathophysiology;Comprehensive Physiology;2015-06-24

4. Anatomy and Physiology of the Gastrointestinal Microcirculation;PanVascular Medicine;2015

5. Physiology of the Gastrointestinal Microcirculation;PanVascular Medicine;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3