Effects of hyperthermic stress on myocardial function during experimental coronary ischemia.

Author:

Liedtke A J,Hughes H C

Abstract

We evaluated hyperthermic influences on ischemic hearts by comparing two groups of intact working swine hearts (n = 20) made globally ischemic. Heart muscle temperature was selectively increased from 37.5 +/- 0.3 degrees C to 39.7 +/- 0.3 degrees C in one group (n = 11) by warming the coronary perfusate. Ischemia in normothermic hearts significantly (P less than 0.05) decreased mechanical function (as reflected by increases in left ventricular end-diastolic pressure [LVEDP]), myocardial oxygen consumption (MVO2), glucose uptake, glycolytic flux, free fatty acid (FFA) uptake and oxidation, and tissue stores of high energy phosphates. Hearing in ischemic hearts further depressed mechanical function at similar reductions in coronary flow and MVO2. Glucose uptake was terminally increased over normothermic values (329 vs. 221 mumol/hr per g) as was glycolytic metabolism, FFA uptake (26 vs. 17 mumol/hr per g), and FFA oxidation (21 vs. 11 mumol/hr per g). However, these changes were not translated into increased energy stores of tissue creatine phosphate and ATP. Thus, in ischemic hearts, hyperthermia neither prevented the development of mechanical deterioration nor improved oxidative phosphorylation despite increases in metabolic substrate utilization. These data suggest that in experimental global ischemia heat is an added energy drain in already burdened myocardium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3