Correlation of Visco-elastic Properties of Large Arteries with Microscopic Structure

Author:

APTER JULIA T.1,RABINOWITZ MURRAY1,CUMMINGS DOROTHY H.1

Affiliation:

1. Committee on Mathematical Biology and the Departments of Medicine and Pathology, University of Chicago, Chicago, Illinois

Abstract

The media of 14 regions of the aorta and 3 regions of the pulmonary artery of dogs were subjected to a step-function circumferential stretch taking 20 msec to complete. The tension rose synchronously with the increase in circumference, then dropped exponentially to a reasonably steady state within 2 sec. A mathematical model, developed consistent with this stress-relaxation curve, showed how to use the tension curves to measure a viscous, a serieselastic, and a parallel-elastic constant unique for a given curve. These constants were compared with the microscopic structure of the same or similar segments; collagen was determined as hydroxyproline in a water soluble fraction, elastin as hydroxyproline in the residue and from the width and number of elastic lamellae, and muscle from the nitrogen content of a nonfibrous fraction, from cell counts and from contractility. The constituents varied widely and independently enough to permit correlating viscous and elastic constants with microscopic structure. The viscous and series-elastic constants were higher where muscle content was high, and increased markedly when the muscle was tonically contracted. The parallel-elastic constant was high when elastin was high and in the presence of contracted muscle, but seemed independent of collagen content, at the moderate tensions tested.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3