Loss of SPEG Inhibitory Phosphorylation of Ryanodine Receptor Type-2 Promotes Atrial Fibrillation

Author:

Campbell Hannah M.12ORCID,Quick Ann P.12,Abu-Taha Issam3,Chiang David Y.124,Kramm Carlos F.1,Word Tarah A.12,Brandenburg Sören5,Hulsurkar Mohit12ORCID,Alsina Katherina M.12,Liu Hui-Bin126,Martin Brian12,Uhlenkamp Dennis35,Moore Oliver M.17ORCID,Lahiri Satadru K.1,Corradini Eleonora8,Kamler Markus9,Heck Albert J.R.8ORCID,Lehnart Stephan E.5ORCID,Dobrev DobromirORCID,Wehrens Xander H.T.1271011ORCID

Affiliation:

1. Cardiovascular Research Institute (H.M.C., A.P.Q., D.Y.C., C.F.K., T.A.W., M.H., K.MA., H.-B.L., B.M., O.M.M., S.K.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.

2. Department of Molecular Physiology & Biophysics (H.M.C., A.P.Q., D.Y.C., F.K., T.A.W., M.H., K.M.A., H.-L., B.M., O.M.M., S.K.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.

3. Institute of Pharmacology (I.A.-T., D.D.), University Duisburg-Essen, Germany.

4. Department of Medicine (Cardiovascular Division), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (D.Y.C.).

5. Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Germany (S.B., D.U., S.E.L.).

6. Institute of Clinical Pharmacy, the Second Affiliated Hospital of Harbin Medical University, China (H.-B.L.).

7. Department of Neuroscience (O.M.M., X.H.T.W.), Baylor College of Medicine, Houston, TX.

8. Biomolecular Mass Spectrometry & Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands (E.C., A.J.R.H.).

9. Department of Thoracic and Cardiovascular Surgery Huttrop (M.K.), University Duisburg-Essen, Germany.

10. Department of Medicine (Cardiology) (X.H.T.W.), Baylor College of Medicine, Houston, TX.

11. Department of Pediatrics (X.H.T.W.), Baylor College of Medicine, Houston, TX.

Abstract

Background: Enhanced diastolic calcium (Ca 2+ ) release through ryanodine receptor type-2 (RyR2) has been implicated in atrial fibrillation (AF) promotion. Diastolic sarcoplasmic reticulum Ca 2+ leak is caused by increased RyR2 phosphorylation by PKA (protein kinase A) or CaMKII (Ca 2+ /calmodulin-dependent kinase-II) phosphorylation, or less dephosphorylation by protein phosphatases. However, considerable controversy remains regarding the molecular mechanisms underlying altered RyR2 function in AF. We thus aimed to determine the role of SPEG (striated muscle preferentially expressed protein kinase), a novel regulator of RyR2 phosphorylation, in AF pathogenesis. Methods: Western blotting was performed with right atrial biopsies from patients with paroxysmal AF. SPEG atrial knockout mice were generated using adeno-associated virus 9. In mice, AF inducibility was determined using intracardiac programmed electric stimulation, and diastolic Ca 2+ leak in atrial cardiomyocytes was assessed using confocal Ca 2+ imaging. Phosphoproteomics studies and Western blotting were used to measure RyR2 phosphorylation. To test the effects of RyR2-S2367 phosphorylation, knockin mice with an inactivated S2367 phosphorylation site (S2367A) and a constitutively activated S2367 residue (S2367D) were generated by using CRISPR-Cas9. Results: Western blotting revealed decreased SPEG protein levels in atrial biopsies from patients with paroxysmal AF in comparison with patients in sinus rhythm. SPEG atrial-specific knockout mice exhibited increased susceptibility to pacing-induced AF by programmed electric stimulation and enhanced Ca 2+ spark frequency in atrial cardiomyocytes with Ca 2+ imaging, establishing a causal role for decreased SPEG in AF pathogenesis. Phosphoproteomics in hearts from SPEG cardiomyocyte knockout mice identified RyR2-S2367 as a novel kinase substrate of SPEG. Western blotting demonstrated that RyR2-S2367 phosphorylation was also decreased in patients with paroxysmal AF. RyR2-S2367A mice exhibited an increased susceptibility to pacing-induced AF, and aberrant atrial sarcoplasmic reticulum Ca 2+ leak, as well. In contrast, RyR2-S2367D mice were resistant to pacing-induced AF. Conclusions: Unlike other kinases (PKA, CaMKII) that increase RyR2 activity, SPEG phosphorylation reduces RyR2-mediated sarcoplasmic reticulum Ca 2+ release. Reduced SPEG levels and RyR2-S2367 phosphorylation typified patients with paroxysmal AF. Studies in S2367 knockin mouse models showed a causal relationship between reduced S2367 phosphorylation and AF susceptibility. Thus, modulating SPEG activity and phosphorylation levels of the novel S2367 site on RyR2 may represent a novel target for AF treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3