TBX20 Improves Contractility and Mitochondrial Function During Direct Human Cardiac Reprogramming

Author:

Tang Yawen1,Aryal Sajesan23,Geng Xiaoxiao1,Zhou Xinyue23,Fast Vladimir G.1,Zhang Jianyi1ORCID,Lu Rui23ORCID,Zhou Yang1ORCID

Affiliation:

1. Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.

2. Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.

3. O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.

Abstract

Background: Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as a promising strategy to remuscularize injured myocardium. However, it is insufficient to generate functional induced cardiomyocytes from human fibroblasts using conventional reprogramming cocktails, and the underlying molecular mechanisms are not well studied. Methods: To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human induced cardiomyocytes and functional cardiomyocytes. Results: We identified TBX20 (T-box transcription factor 20) as the top cardiac gene that is unable to be activated by the MGT133 reprogramming cocktail ( MEF2C , GATA4 , TBX5 , and miR-133 ). TBX20 is required for normal heart development and cardiac function in adult cardiomyocytes, yet its role in cardiac reprogramming remains undefined. We show that the addition of TBX20 to the MGT133 cocktail (MGT+TBX20) promotes cardiac reprogramming and activates genes associated with cardiac contractility, maturation, and ventricular heart. Human induced cardiomyocytes produced with MGT+TBX20 demonstrated more frequent beating, calcium oscillation, and higher energy metabolism as evidenced by increased mitochondria numbers and mitochondrial respiration. Mechanistically, comprehensive transcriptomic, chromatin occupancy, and epigenomic studies revealed that TBX20 colocalizes with MGT reprogramming factors at cardiac gene enhancers associated with heart contraction, promotes chromatin binding and co-occupancy of MGT factors at these loci, and synergizes with MGT for more robust activation of target gene transcription. Conclusions: TBX20 consolidates MGT cardiac reprogramming factors to activate cardiac enhancers to promote cardiac cell fate conversion. Human induced cardiomyocytes generated with TBX20 showed enhanced cardiac function in contractility and mitochondrial respiration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3