Role of IgE-FcεR1 in Pathological Cardiac Remodeling and Dysfunction

Author:

Zhao Hongmei1,Yang Hongqin1,Geng Chi1,Chen Yang2,Pang Junling1,Shu Ting1,Zhao Meijun1,Tang Yaqin1,Li Zhiwei1ORCID,Li Baicun1,Hou Cuiliu1,Song Xiaomin1,Wu Aoxue3,Guo Xiaoxiao3ORCID,Chen Si4,Liu Bin4,Yan Chen4,Wang Jing1ORCID

Affiliation:

1. State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.).

2. Department of Pharmacology, School of Basic Medical Sciences, Inner Mongolia Medical University, Huhhot, China (Y.C.).

3. Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (A.W., X.G.).

4. Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.).

Abstract

Background: Immunoglobulin E (IgE) belongs to a class of immunoglobulins involved in immune response to specific allergens. However, the roles of IgE and IgE receptor (FcεR1) in pathological cardiac remodeling and heart failure are unknown. Methods: Serum IgE levels and cardiac FcεR1 expression were assessed in diseased hearts from human and mouse. The role of FcεR1 signaling in pathological cardiac remodeling was explored in vivo by FcεR1 genetic depletion, anti-IgE antibodies, and bone marrow transplantation. The roles of the IgE-FcεR1 pathway were further evaluated in vitro in primary cultured rat cardiomyocytes and cardiac fibroblasts (CFs). RNA sequencing and bioinformatic analyses were used to identify biochemical changes and signaling pathways that are regulated by IgE/FcεR1. Results: Serum IgE levels were significantly elevated in patients with heart failure as well as in 2 mouse cardiac disease models induced by chronic pressure overload via transverse aortic constriction and chronic angiotensin II infusion. Interestingly, FcεR1 expression levels were also significantly upregulated in failing hearts from human and mouse. Blockade of the IgE-FcεR1 pathway by FcεR1 knockout alleviated transverse aortic constriction– or angiotensin II–induced pathological cardiac remodeling or dysfunction. Anti-IgE antibodies (including the clinical drug omalizumab) also significantly alleviated angiotensin II–induced cardiac remodeling. Bone marrow transplantation experiments indicated that IgE-induced cardiac remodeling was mediated through non–bone marrow–derived cells. FcεR1 was found to be expressed in both cardiomyocytes and CFs. In cultured rat cardiomyocytes, IgE-induced cardiomyocyte hypertrophy and hypertrophic marker expression were abolished by depleting FcεR1. In cultured rat CFs, IgE-induced CF activation and matrix protein production were also blocked by FcεR1 deficiency. RNA sequencing and signaling pathway analyses revealed that transforming growth factor-β may be a critical mediator, and blocking transforming growth factor-β indeed alleviated IgE-induced cardiomyocyte hypertrophy and cardiac fibroblast activation in vitro. Conclusions: Our findings suggest that IgE induction plays a causative role in pathological cardiac remodeling, at least partially via the activation of IgE-FcεR1 signaling in cardiomyocytes and CFs. Therapeutic strategies targeting the IgE-FcεR1 axis may be effective for managing IgE-mediated cardiac remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3