Local Tenomodulin Absence, Angiogenesis, and Matrix Metalloproteinase Activation Are Associated With the Rupture of the Chordae Tendineae Cordis

Author:

Kimura Naritaka1,Shukunami Chisa1,Hakuno Daihiko1,Yoshioka Masatoyo1,Miura Shigenori1,Docheva Denitsa1,Kimura Tokuhiro1,Okada Yasunori1,Matsumura Goki1,Shin'oka Toshiharu1,Yozu Ryohei1,Kobayashi Junjiro1,Ishibashi-Ueda Hatsue1,Hiraki Yuji1,Fukuda Keiichi1

Affiliation:

1. From the Departments of Regenerative Medicine and Advanced Cardiac Therapeutics (N.K., D.H., M.Y., K.F.), Cardiovascular Surgery (N.K., R.Y.), and Pathology (T.K., Y.O.), Keio University School of Medicine, Tokyo, Japan; Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan (C.S., S.M., Y.H.); Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinstried, Germany (D.D.); Department of Cardiovascular Surgery, Heart...

Abstract

Background— Rupture of the chordae tendineae cordis (CTC) is a well-known cause of mitral regurgitation. Despite its importance, the mechanisms by which the CTC is protected and the cause of its rupture remain unknown. CTC is an avascular tissue. We investigated the molecular mechanisms underlying the avascularity of CTC and the correlation between avascularity and CTC rupture. Methods and Results— We found that tenomodulin, which is a recently isolated antiangiogenic factor, was expressed abundantly in the elastin-rich subendothelial outer layer of normal rodent, porcine, canine, and human CTC. Conditioned medium from cultured CTC interstitial cells strongly inhibited tube formation and mobilization of endothelial cells; these effects were partially inhibited by small-interfering RNA against tenomodulin. The immunohistochemical analysis was performed on 12 normal and 16 ruptured CTC obtained from the autopsy or surgical specimen. Interestingly, tenomodulin was locally absent in the ruptured areas of CTC, where abnormal vessel formation, strong expression of vascular endothelial growth factor-A and matrix metalloproteinases, and infiltration of inflammatory cells were observed, but not in the normal or nonruptured area. In anesthetized open-chest dogs, the tenomodulin layer of tricuspid CTC was surgically filed, and immunohistological analysis was performed after several months. This intervention gradually caused angiogenesis and expression of vascular endothelial growth factor-A and matrix metalloproteinases in the core collagen layer in a time-dependent manner. Conclusions— These findings provide evidence that tenomodulin is expressed universally in normal CTC in a concentric pattern and that local absence of tenomodulin, angiogenesis, and matrix metalloproteinase activation are associated with CTC rupture.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3