Systems Approach to Discovery of Therapeutic Targets for Vein Graft Disease: PPARα Pivotally Regulates Metabolism, Activation, and Heterogeneity of Macrophages and Lesion Development

Author:

Decano Julius L.1ORCID,Singh Sasha A.1,Gasparotto Bueno Cauê1,Ho Lee Lang1,Halu Arda12ORCID,Chelvanambi Sarvesh1,Matamalas Joan T.1ORCID,Zhang Hengmin1,Mlynarchik Andrew K.1,Qiao Jiao1,Sharma Amitabh12,Mukai Shin1,Wang Jianguo1,Anderson Daniel G.3,Ozaki C. Keith4ORCID,Libby Peter5ORCID,Aikawa Elena156ORCID,Aikawa Masanori1256ORCID

Affiliation:

1. Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division (J.L.D., S.A.S., C.G.B., L.H.L., A.H., S.C., J.T.M., H.Z., A.K.M., J.Q., A.S., S.M., J.W., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

2. Channing Division of Network Medicine (A.H., A.S., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

3. Institutes for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge (D.G.A.).

4. Department of Medicine, Division of Vascular and Endovascular Surgery, Department of Surgery (C.K.O.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

5. Center for Excellence in Vascular Biology (P.L., E.A., M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

6. Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health, Russia (E.A., M.A.).

Abstract

Background: Vein graft failure remains a common clinical challenge. We applied a systems approach in mouse experiments to discover therapeutic targets for vein graft failure. Methods: Global proteomics and high-dimensional clustering on multiple vein graft tissues were used to identify potential pathogenic mechanisms. The PPARs (peroxisome proliferator-activated receptors) pathway served as an example to substantiate our discovery platform. In vivo mouse experiments with macrophage-targeted PPARα small interfering RNA, or the novel, selective activator pemafibrate demonstrate the role of PPARα in the development and inflammation of vein graft lesions. In vitro experiments further included metabolomic profiling, quantitative polymerase chain reaction, flow cytometry, metabolic assays, and single-cell RNA sequencing on primary human and mouse macrophages. Results: We identified changes in the vein graft proteome associated with immune responses, lipid metabolism regulated by the PPARs, fatty acid metabolism, matrix remodeling, and hematopoietic cell mobilization. PPARα agonism by pemafibrate retarded the development and inflammation of vein graft lesions in mice, whereas gene silencing worsened plaque formation. Pemafibrate also suppressed arteriovenous fistula lesion development. Metabolomics/lipidomics, functional metabolic assays, and single-cell analysis of cultured human macrophages revealed that PPARα modulates macrophage glycolysis, citrate metabolism, mitochondrial membrane sphingolipid metabolism, and heterogeneity. Conclusions: This study explored potential drivers of vein graft inflammation and identified PPARα as a novel potential pharmacological treatment for this unmet medical need.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3