Salt-Induced Hepatic Inflammatory Memory Contributes to Cardiovascular Damage Through Epigenetic Modulation of SIRT3

Author:

Gao Peng1,You Mei1,Li Li1,Zhang Qin2,Fang Xia3,Wei Xiao1,Zhou Qing1,Zhang Hexuan3,Wang Miao2,Lu Zongshi1,Wang Lijuan1,Sun Fang1,Liu Daoyan1,Zheng Hongting1,Yan Zhencheng1,Yang Gangyi2,Zhu Zhiming1ORCID

Affiliation:

1. Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China.

2. Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China (Q. Zhang, X.F., M.W., G.Y.).

3. Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital (H.Z.), Army Medical University, Chongqing China.

Abstract

Background: High salt intake is the leading dietary risk factor for cardiovascular diseases. Although clinical evidence suggests that high salt intake is associated with nonalcoholic fatty liver disease, which is an independent risk factor for cardiovascular diseases, it remains elusive whether salt-induced hepatic damage leads to the development of cardiovascular diseases. Methods: Mice were fed with normal or high-salt diet for 8 weeks to determine the effect of salt loading on liver histological changes and blood pressure, and salt withdrawal and metformin treatment were also conducted on some high-salt diet–fed mice. Adeno-associated virus 8, global knockout, or tissue-specific knockout mice were used to manipulate the expression of some target genes in vivo, including SIRT3 (sirtuin 3), NRF2 (NF-E2-related factor 2), and AMPK (AMP-activated protein kinase). Results: Mice fed with a high-salt diet displayed obvious hepatic steatosis and inflammation, accompanied with hypertension and cardiac dysfunction. All these pathological changes persisted after salt withdrawal, displaying a memory phenomenon. Gene expression analysis and phenotypes of SIRT3 knockout mice revealed that reduced expression of SIRT3 was a chief culprit responsible for the persistent inflammation in the liver, and recovering SIRT3 expression in the liver effectively inhibits the sustained hepatic inflammation and cardiovascular damage. Mechanistical studies reveal that high salt increases acetylated histone 3 lysine 27 (H3K27ac) on SIRT3 promoter in hepatocytes, thus inhibiting the binding of NRF2, and results in the sustained inhibition of SIRT3 expression. Treatment with metformin activated AMPK, which inhibited salt-induced hepatic inflammatory memory and cardiovascular damage by lowering the H3K27ac level on SIRT3 promoter, and increased NRF2 binding ability to activate SIRT3 expression. Conclusions: This study demonstrates that SIRT3 inhibition caused by histone modification is the key factor for the persistent hepatic steatosis and inflammation that contributes to cardiovascular damage under high salt loading. Avoidance of excessive salt intake and active intervention of epigenetic modification may help to stave off the persistent inflammatory status that underlies high-salt–induced cardiovascular damage in clinical practice.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3