Platelet Extracellular Regulated Protein Kinase 5 Is a Redox Switch and Triggers Maladaptive Platelet Responses and Myocardial Infarct Expansion

Author:

Cameron Scott J.1,Ture Sara K.1,Mickelsen Deanne1,Chakrabarti Enakshi1,Modjeski Kristina L.1,McNitt Scott1,Seaberry Michael1,Field David J.1,Le Nhat-Tu1,Abe Jun-ichi1,Morrell Craig N.1

Affiliation:

1. From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.).

Abstract

Background— Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes. In comparison with platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species–rich environments may not be the same as in normal healthy conditions. Extracellular regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase family member activated in hypoxic, reactive oxygen species–rich environments and in response to receptor-signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells after ischemia. We present evidence that platelets express ERK5 and that platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent reactive oxygen species–mediated mechanisms in ischemic myocardium. Methods and Results— Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and that platelet-specific ERK5 –/– mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5-regulated proteins is reduced in ERK5 –/– platelets post-MI. Conclusions— ERK5 functions as a platelet activator in ischemic conditions, and platelet ERK5 maintains the expression of some platelet proteins after MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3