Role of the Protein Kinase C-ε–Raf-1–MEK-1/2–p44/42 MAPK Signaling Cascade in the Activation of Signal Transducers and Activators of Transcription 1 and 3 and Induction of Cyclooxygenase-2 After Ischemic Preconditioning

Author:

Xuan Yu-Ting1,Guo Yiru1,Zhu Yanqing1,Wang Ou-Li1,Rokosh Gregg1,Messing Robert O.1,Bolli Roberto1

Affiliation:

1. From the Institute of Molecular Cardiology (Y.-T.X., Y.G., Y.Z., O.-L.W., G.R., R.B.), University of Louisville, Louisville, Ky, and the Ernest Gallo Clinic and Research Center (R.O.M.), Department of Neurology, University of California at San Francisco, Emeryville, Calif.

Abstract

Background— Although Janus kinase (JAK)–mediated Tyr phosphorylation of signal transducers and activators of transcription (STAT) 1 and 3 is essential for the upregulation of cyclooxygenase-2 (COX-2) and the cardioprotection of late preconditioning (PC), the role of Ser phosphorylation of STAT1 and STAT3 in late PC and the upstream signaling mechanisms responsible for mediating Ser phosphorylation of STAT1 and STAT3 remain unknown. Methods and Results— In mice preconditioned with six 4-minute coronary occlusion/4-minute reperfusion cycles, we found that (1) ischemic PC activates the Raf1–mitogen-activated protein kinase (MAPK)/extracellular signal–regulated kinase kinase (MEK) 1/2–p44/42 MAPK signaling pathway, induces phosphorylation of STAT1 and STAT3 on the Ser-727 residue, and upregulates COX-2 expression; (2) pSer-STAT1 and pSer-STAT3 form complexes with pTyr-p44/42 MAPKs in preconditioned myocardium, supporting the concept that Ser phosphorylation of these 2 factors is mediated by activated p44/42 MAPKs; and (3) activation of the Raf-1-MEK-1/2–p44/42 MAPK-pSer-STAT1/3 pathway and induction of COX-2 during ischemic PC are dependent on protein kinase C (PKC)-ε activity, as determined by both pharmacological and genetic inhibition of PKCε. Conclusions— To our knowledge, this is the first study to demonstrate that ischemic PC causes Ser phosphorylation of STAT1 and STAT3 and that this event is governed by PKCε via a PKCε–Raf1-MEK1/2-p44/42 MAPK pathway. Furthermore, this is the first report that COX-2 expression in the heart is controlled by PKCε. Together with our previous findings, the present study implies that STAT-dependent transcription of the genes responsible for ischemic PC is modulated by a dual signaling mechanism that involves both JAK1/2 (Tyr phosphorylation) and PKCε (Ser phosphorylation).

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3