Inactivation of Malic Enzyme 1 in Endothelial Cells Alleviates Pulmonary Hypertension

Author:

Luo Ya123ORCID,Qi Xianmei12,Zhang Zhenxi42,Zhang Jiawei12ORCID,Li Bolun12ORCID,Shu Ting12ORCID,Li Xiaona12,Hu Huiyuan12,Li Jinqiu12ORCID,Tang Qihao12ORCID,Zhou Yitian12ORCID,Wang Mingyao5ORCID,Fan Tianfei2,Guo Wenjun2,Liu Ying2,Zhang Jin6ORCID,Pang Junling12,Yang Peiran12ORCID,Gao Ran2,Chen Wenhui7,Yan Chen8ORCID,Xing Yanjiang12ORCID,Du Wenjing42ORCID,Wang Jing12ORCID,Wang Chen1259

Affiliation:

1. State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)

2. Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.).

3. Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.L.).

4. State Key Laboratory of Common Mechanism Research for Major Diseases (Z.Z., W.D.)

5. Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China (M.W., C.W.).

6. Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China (J.Z.).

7. Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China (W.C.).

8. Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (C.Y.).

9. Chinese Academy of Engineering, Beijing, China (C.W.).

Abstract

BACKGROUND: Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS: Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)–induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS: We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A 2A R-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS: Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3