Piezo1-Mediated Neurogenic Inflammatory Cascade Exacerbates Ventricular Remodeling After Myocardial Infarction

Author:

Sun Meiyan123ORCID,Mao Sui12,Wu Chao12,Zhao Xiaoyong4,Guo Chengxiao12,Hu Jun12,Xu Shijin12,Zheng Fen5,Zhu Guoqing5ORCID,Tao Hui12ORCID,He Shufang12ORCID,Hu Ji6ORCID,Zhang Ye12ORCID

Affiliation:

1. Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.).

2. Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China (M.S., S.M., C.W., C.G., J.H., S.X., H.T., S.H., Y.Z.).

3. Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, China (M.S.).

4. Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (X.Z.).

5. Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, China (F.Z., G.Z.).

6. Laboratory of Stress Neurobiology, School of Life Science and Technology, ShanghaiTech University, China (J.H.).

Abstract

BACKGROUND: Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel–mediated neurogenic inflammatory cascade underlies ventricular remodeling–related mechanotransduction. METHODS: By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)–specific Piezo1 knockdown rats and adeno-associated virus–PHP.S—mediated TDRG neuron–specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody–mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus–PHP.S—mediated TDRG neuron–specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS: Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron–specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron–specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS: Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3