Point Mutation in the HCN4 Cardiac Ion Channel Pore Affecting Synthesis, Trafficking, and Functional Expression Is Associated With Familial Asymptomatic Sinus Bradycardia

Author:

Nof Eyal1,Luria David1,Brass Dovrat1,Marek Dina1,Lahat Hadas1,Reznik-Wolf Haya1,Pras Elon1,Dascal Nathan1,Eldar Michael1,Glikson Michael1

Affiliation:

1. From the Heart Institute (E.N., D.L., M.E., M.G.) and Laboratory of Human Genetics (D.M., H.L., H.R.-W., E.P.), Chaim Sheba Medical Center, Tel-Hashomer; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (D.B., N.D.); and Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Bar Ilan (D.M.), Israel.

Abstract

Background— The hyperpolarization-activated nucleotide-gated channel-HCN4 plays a major role in the diastolic depolarization of sinus atrial node cells. Mutant HCN4 channels have been found to be associated with inherited sinus bradycardia. Methods and Results— Sixteen members of a family with sinus bradycardia were evaluated. Evaluation included a clinical questionnaire, 12-lead ECGs, Holter monitoring, echocardiography, and treadmill exercise testing. Eight family members (5 males) were classified as affected. All affected family members were asymptomatic with normal exercise capacity during long-term follow-up. Electrophysiological testing performed on 2 affected family members confirmed significant isolated sinus node dysfunction. Segregation analysis suggested autosomal-dominant inheritance. Direct sequencing of the exons encoding HCN4 revealed a missense mutation, G480R, in the ion channel pore domain in all affected family members. Function analysis, including expression of HCN4 wild-type and G480R in Xenopus oocytes and human embryonic kidney 293 cells, revealed that mutant channels were activated at more negative voltages compared with wild-type channels. Synthesis and expression of the wild-type and mutant HCN4 channel on the plasma membrane tested in human embryonic kidney 293 cells using biotinylation and Western blot analysis demonstrated a reduction in synthesis and a trafficking defect in mutant compared with wild-type channels. Conclusions— We describe an inherited, autosomal-dominant form of sinus node dysfunction caused by a missense mutation in the HCN4 ion channel pore. Despite its critical location, this mutation carries a favorable prognosis without the need for pacemaker implantation during long-term follow-up.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3