Recruitment of Compensatory Pathways to Sustain Oxidative Flux With Reduced Carnitine Palmitoyltransferase I Activity Characterizes Inefficiency in Energy Metabolism in Hypertrophied Hearts

Author:

Sorokina Natalia1,O’Donnell J. Michael1,McKinney Ronald D.1,Pound Kayla M.1,Woldegiorgis Gebre1,LaNoue Kathryn F.1,Ballal Kalpana1,Taegtmeyer Heinrich1,Buttrick Peter M.1,Lewandowski E. Douglas1

Affiliation:

1. From the Program in Integrative Cardiac Metabolism (N.S., J.M.O., K.M.P., E.D.L.) and Center for Cardiovascular Research (N.S., J.M.O., R.D.M., K.M.P., P.M.B., E.D.L.), University of Illinois at Chicago, College of Medicine, Chicago; Department of Environmental and Biomolecular Systems (G.W.), Oregon Health and Science University, Beaverton; Department of Molecular and Cellular Physiology (K.F.L.), Pennsylvania State University Medical School, Hershey; and Department of Internal Medicine (K.B., H.T....

Abstract

Background— Transport rates of long-chain free fatty acids into mitochondria via carnitine palmitoyltransferase I relative to overall oxidative rates in hypertrophied hearts remain poorly understood. Furthermore, the extent of glucose oxidation, despite increased glycolysis in hypertrophy, remains controversial. The present study explores potential compensatory mechanisms to sustain tricarboxylic acid cycle flux that resolve the apparent discrepancy of reduced fatty acid oxidation without increased glucose oxidation through pyruvate dehydrogenase complex in the energy-poor, hypertrophied heart. Methods and Results— We studied flux through the oxidative metabolism of intact adult rat hearts subjected to 10 weeks of pressure overload (hypertrophied; n=9) or sham operation (sham; n=8) using dynamic 13 C–nuclear magnetic resonance. Isolated hearts were perfused with [2,4,6,8,10,12,14,16- 13 C 8 ] palmitate (0.4 mmol/L) plus glucose (5 mmol/L) in a 14.1-T nuclear magnetic resonance magnet. At similar tricarboxylic acid cycle rates, flux through carnitine palmitoyltransferase I was 23% lower in hypertrophied ( P <0.04) compared with sham hearts and corresponded to a shift toward increased expression of the L–carnitine palmitoyltransferase I isoform. Glucose oxidation via pyruvate dehydrogenase complex did not compensate for reduced palmitate oxidation rates. However, hypertrophied rats displayed an 83% increase in anaplerotic flux into the tricarboxylic acid cycle ( P <0.03) that was supported by glycolytic pyruvate, coincident with increased mRNA transcript levels for malic enzyme. Conclusions— In cardiac hypertrophy, fatty acid oxidation rates are reduced, whereas compensatory increases in anaplerosis maintain tricarboxylic acid cycle flux and account for a greater portion of glucose oxidation than previously recognized. The shift away from acetyl coenzyme A production toward carbon influx via anaplerosis bypasses energy, yielding reactions contributing to a less energy-efficient heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3