Genetic Landscape of the ACE2 Coronavirus Receptor

Author:

Yang Zhijian12ORCID,Macdonald-Dunlop Erin3,Chen Jiantao12ORCID,Zhai Ranran12ORCID,Li Ting12,Richmond Anne4,Klarić Lucija4ORCID,Pirastu Nicola35ORCID,Ning Zheng16ORCID,Zheng Chenqing1,Wang Yipeng1,Huang Tingting6ORCID,He Yazhou37ORCID,Guo Huiming8,Ying Kejun910ORCID,Gustafsson Stefan11,Prins Bram1213,Ramisch Anna14ORCID,Dermitzakis Emmanouil T.14,Png Grace1516ORCID,Eriksson Niclas17ORCID,Haessler Jeffrey18,Hu Xiaowei19,Zanetti Daniela2021ORCID,Boutin Thibaud4,Hwang Shih-Jen2223ORCID,Wheeler Eleanor24,Pietzner Maik2425,Raffield Laura M.26ORCID,Kalnapenkis Anette2728,Peters James E.291213,Viñuela Ana1430ORCID,Gilly Arthur1531,Elmståhl Sölve32,Dedoussis George33,Petrie John R.34,Polašek Ozren3536,Folkersen Lasse37ORCID,Chen Yan6ORCID,Yao Chen2223,Võsa Urmo27,Pairo-Castineira Erola438,Clohisey Sara38,Bretherick Andrew D.4,Rawlik Konrad38,Esko Tõnu27,Enroth Stefan39,Johansson Åsa39,Gyllensten Ulf39,Langenberg Claudia2425ORCID,Levy Daniel2223ORCID,Hayward Caroline4ORCID,Assimes Themistocles L.2021ORCID,Kooperberg Charles18ORCID,Manichaikul Ani W.19,Siegbahn Agneta11,Wallentin Lars11,Lind Lars11ORCID,Zeggini Eleftheria153140,Schwenk Jochen M.41ORCID,Butterworth Adam S.12134243ORCID,Michaëlsson Karl44ORCID,Pawitan Yudi6,Joshi Peter K.3ORCID,Baillie J. Kenneth3845,Mälarstig Anders646,Reiner Alexander P.18ORCID,Wilson James F.34,Shen Xia147236ORCID, ,

Affiliation:

1. Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China (Z.Y., J.C., R.Z., T.L., Z.N., C.Z., Y.W., X.S.).

2. Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China (Z.Y., J.C., R.Z., T.L., X.S.).

3. Centre for Global Health Research, Usher Institute, University of Edinburgh, UK (E.M.-D., N.P., Y.H., P.K.J., J.F.W., X.S.).

4. MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, UK (A. Richmond, L.K., T.B., E.P.-C., A.D.B., C.H., J.F.W.).

5. Human Technopole Viale Rita Levi-Montalcini, Milan, Italy (N.P.).

6. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (Z.N., T.H., Y.C., Y.P., A.M., X.S.).

7. West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu (Y.H.).

8. Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences, Guangzhou, China (H.G.).

9. Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (K.Y.).

10. T.H. Chan School of Public Health, Harvard University, Boston, MA (K.Y.).

11. Department of Medical Sciences, Uppsala University, Sweden (A.S., S.G., L.W., L.L.).

12. British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, UK (B.P., J.E.P., A.S.B.).

13. Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge (B.P., J.E.P., A.S.B.).

14. Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland (A. Ramisch, E.T.D., A.V.).

15. Institute of Translational Genomics, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (G.P., A.G., E.Z.).

16. Technical University of Munich (TUM), School of Medicine, Germany (G.P.).

17. Uppsala Clinical Research Center, Sweden (N.E.).

18. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K., A.P.R.).

19. Center for Public Health Genomics, University of Virginia, Charlottesville (X.H., A.W.M.).

20. Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (D.Z., T.L.A.).

21. Stanford Cardiovascular Institute, Stanford University, CA (D.Z., T.L.A.).

22. Framingham Heart Study, MA (S.-J.H., C.Y., D.L.).

23. Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.).

24. MRC Epidemiology Unit, University of Cambridge, UK (E.W., M.P., C.L.).

25. Computational Medicine, Berlin Institute of Health at Charité–Universitätsmedizin, Germany (M.P., C.L.).

26. Department of Genetics, University of North Carolina at Chapel Hill (L.M.R.).

27. Estonian Genome Centre, Institute of Genomics, University of Tartu, Estonia (A.K., U.V., T.E.).

28. Institute of Molecular and Cell Biology, University of Tartu, Estonia (A.K.).

29. Department of Immunology and Inflammation, Imperial College London, UK (J.E.P.).

30. Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK (A.V.).

31. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (A.G., E.Z.).

32. Faculty of Medicine, Lund University, Sweden (S. Elmståhl).

33. Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece (G.D.).

34. Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK (J. Petrie).

35. University of Split School of Medicine, Croatia (O.P.).

36. Algebra University College, Ilica, Zagreb, Croatia (O.P.).

37. Danish National Genome Center, Copenhagen, Denmark (L.F.).

38. Roslin Institute, University of Edinburgh, Easter Bush, UK (E.P.-C., S.C., K.R., J.K.B.).

39. Department of Immunology, Genetics and Pathology, Uppsala Universitet, Science for Life Laboratory, Sweden (S. Enroth, A.J., U.G.).

40. Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Germany (E.Z.).

41. Affinity Proteomics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden (J.M.S.).

42. British Heart Foundation Centre of Research Excellence, University of Cambridge, UK (A.S.B.).

43. National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, UK (A.S.B.).

44. Department of Surgical Sciences, Uppsala University, Sweden (K.M.).

45. Intensive Care Unit, Royal Infirmary of Edinburgh, UK (J.K.B.).

46. Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden (A.M.).

47. State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China (X.S.).

Abstract

Background: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. Methods: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics–based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. Results: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis–protein quantitative trait loci–based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10–2.42]; P =0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05–2.21]; P =0.03), and infection (odds ratio, 1.60 [95% CI, 1.08–2.37]; P =0.02). Tissue- and cell type–specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. Conclusions: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3