Longitudinal Tracking of Recipient Macrophages in a Rat Chronic Cardiac Allograft Rejection Model With Noninvasive Magnetic Resonance Imaging Using Micrometer-Sized Paramagnetic Iron Oxide Particles

Author:

Ye Qing1,Wu Yijen L.1,Foley Lesley M.1,Hitchens T. Kevin1,Eytan Danielle F.1,Shirwan Haval1,Ho Chien1

Affiliation:

1. From the Department of Biological Sciences and Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pa (Q.Y., Y.L.W., L.M.F., T.K.H., D.F.E., C.H.); and Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Ky (H.S.).

Abstract

Background— Long-term survival of heart transplants is hampered by chronic rejection (CR). Studies indicate the involvement of host macrophages in the development of CR; however, the precise role of these cells in CR is unclear. Thus, it is important to develop noninvasive techniques to serially monitor the movement and distribution of recipient macrophages in chronic cardiac allograft rejection in vivo. Methods and Results— We have employed a rat heterotopic working-heart CR model for a magnetic resonance imaging experiment. Twenty-one allograft (PVG.1U→PVG.R8) and 9 isograft (PVG.R8→PVG.R8) transplantations were performed. Recipient macrophages are labeled via intravenous injection of micron-sized paramagnetic iron oxide particles (0.9 μm in diameter) at a dose of 4.5 mg Fe per rat 1 day before transplantation. Serial in vivo magnetic resonance images were acquired for up to 16 weeks. The migration of labeled recipient cells in our CR model, in which cardiac CR is evident at 3 weeks and most extensive by 16 weeks after transplantation, can be assessed with the use of in vivo magnetic resonance imaging for >100 days after a single micron-sized paramagnetic iron oxide injection. The location and distribution of labeled recipient cells were confirmed with magnetic resonance microscopy and histology. Conclusions— This approach may improve our understanding of the immune cells involved in CR and the management of heart transplantation. Moreover, this study demonstrates the feasibility of noninvasively observing individual targeted cells over long time periods by serial in vivo magnetic resonance imaging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3