Multimodality Molecular Imaging Identifies Proteolytic and Osteogenic Activities in Early Aortic Valve Disease

Author:

Aikawa Elena1,Nahrendorf Matthias1,Sosnovik David1,Lok Vincent M.1,Jaffer Farouc A.1,Aikawa Masanori1,Weissleder Ralph1

Affiliation:

1. From the Center for Molecular Imaging Research (E.A., M.N., D.S., V.M.L., F.A.J., R.W.), Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass; Cardiology Division (D.S., F.A.J.), Department of Medicine, Massachusetts General Hospital, Boston, Mass; Cardiovascular Division (M.A.), Department of Medicine, Brigham and Women’s Hospital, Boston, Mass; and Donald W. Reynolds Cardiovascular Clinical Research Center (E.A., M.N., F.A.J., M.A., R.W.), Harvard Medical School, Boston, Mass.

Abstract

Background— Visualizing early changes in valvular cell functions in vivo may predict the future risk and identify therapeutic targets for prevention of aortic valve stenosis. Methods and Results— To test the hypotheses that (1) aortic stenosis shares a similar pathogenesis to atherosclerosis and (2) molecular imaging can detect early changes in aortic valve disease, we used in vivo a panel of near-infrared fluorescence imaging agents to map endothelial cells, macrophages, proteolysis, and osteogenesis in aortic valves of hypercholesterolemic apolipoprotein E–deficient mice (30 weeks old, n=30). Apolipoprotein E–deficient mice with no probe injection (n=10) and wild-type mice (n=10) served as controls. Valves of apolipoprotein E–deficient mice contained macrophages, were thicker than wild-type mice ( P <0.001), and showed early dysfunction detected by MRI in vivo. Fluorescence imaging detected uptake of macrophage-targeted magnetofluorescent nanoparticles (24 hours after injection) in apolipoprotein E–deficient valves, which was negligible in controls ( P <0.01). Valvular macrophages showed proteolytic activity visualized by protease-activatable near-infrared fluorescence probes. Ex vivo magnetic resonance imaging enhanced with vascular cell adhesion molecule-1–targeted nanoparticles detected endothelial activation in valve commissures, the regions of highest mechanical stress. Osteogenic near-infrared fluorescence signals colocalized with alkaline phosphatase activity and expression of osteopontin, osteocalcin, Runx2/Cbfa1, Osterix, and Notch1 despite no evidence of calcium deposits, which suggests ongoing active processes of osteogenesis in inflamed valves. Notably, the aortic wall contained advanced calcification. Quantitative image analysis correlated near-infrared fluorescence signals with immunoreactive vascular cell adhesion molecule-1, macrophages, and cathepsin-B ( P <0.001). Conclusions— Molecular imaging can detect in vivo the key cellular events in early aortic valve disease, including endothelial cell and macrophage activation, proteolytic activity, and osteogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3