Carbonylation of Runx2 at K176 by 4-Hydroxynonenal Accelerates Vascular Calcification

Author:

Zhai Xiaoxuan123,Cao Shengchuan123ORCID,Wang Jiali1234ORCID,Qiao Bao1234,Liu Xuehao1234,Hua Rui1234,Zhao Menglin1234,Sun Shukun1234,Han Yu1234,Wu Shuo123ORCID,Pang Jiaojiao1234ORCID,Yuan Qiuhuan1234ORCID,Wang Bailu5,Xu Feng123ORCID,Wei Shujian123ORCID,Chen Yuguo123ORCID

Affiliation:

1. Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.).

2. Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.).

3. Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China (X.Z., S.C., J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., S.W., J.P., Q.Y., F.X., S.W., Y.C.).

4. The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan (J.W., B.Q., X.L., R.H., M.Z., S.S., Y.H., J.P., Q.Y.).

5. National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China (B.W.).

Abstract

BACKGROUND: Vascular calcification, which is characterized by calcium deposition in arterial walls and the osteochondrogenic differentiation of vascular smooth muscle cells, is an actively regulated process that involves complex mechanisms. Vascular calcification is associated with increased cardiovascular adverse events. The role of 4-hydroxynonenal (4-HNE), which is the most abundant stable product of lipid peroxidation, in vascular calcification has been poorly investigated. METHODS: Serum was collected from patients with chronic kidney disease and controls, and the levels of 4-HNE and 8-iso-prostaglandin F2α were measured. Sections of coronary atherosclerotic plaques from donors were immunostained to analyze calcium deposition and 4-HNE. A total of 658 patients with coronary artery disease who received coronary computed tomography angiography were recruited to analyze the relationship between coronary calcification and the rs671 mutation in aldehyde dehydrogenase 2 ( ALDH2 ). ALDH2 knockout ( ALDH2 -/ - ) mice, smooth muscle cell–specific ALDH2 knockout mice, ALDH2 transgenic mice, and their controls were used to establish vascular calcification models. Primary mouse aortic smooth muscle cells and human aortic smooth muscle cells were exposed to medium containing β-glycerophosphate and CaCl 2 to investigate cell calcification and the underlying molecular mechanisms. RESULTS: Elevated 4-HNE levels were observed in the serum of patients with chronic kidney disease and model mice and were detected in calcified artery sections by immunostaining. ALDH2 knockout or smooth muscle cell–specific ALDH2 knockout accelerated the development of vascular calcification in model mice, whereas overexpression or activation prevented mouse vascular calcification and the osteochondrogenic differentiation of vascular smooth muscle cells. In patients with coronary artery disease, patients with ALDH2 rs671 gene mutation developed more severe coronary calcification. 4-HNE promoted calcification of both mouse aortic smooth muscle cells and human aortic smooth muscle cells and their osteochondrogenic differentiation in vitro. 4-HNE increased the level of Runx2 (runt-related transcription factor-2), and the effect of 4-HNE on promoting vascular smooth muscle cell calcification was ablated when Runx2 was knocked down. Mutation of Runx2 at lysine 176 reduced its carbonylation and eliminated the 4-HNE–induced upregulation of Runx2. CONCLUSIONS: Our results suggest that 4-HNE increases Runx2 stabilization by directly carbonylating its K176 site and promotes vascular calcification. ALDH2 might be a potential target for the treatment of vascular calcification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3