Identification of Human Ventricular Tachycardia Demarcated by Fixed Lines of Conduction Block in a 3-Dimensional Hyperboloid Circuit

Author:

Nishimura Takuro12ORCID,Shatz Nathan3,Weiss J. Peter4ORCID,Zawaneh Michael4,Bai Rong4,Beaser Andrew D.1ORCID,Upadhyay Gaurav A.1,Aziz Zaid A.1,Nayak Hemal M.1ORCID,Shatz Dalise Y.14,Miyazaki Shinsuke2ORCID,Goya Masahiko2ORCID,Sasano Tetsuo2ORCID,Su Wilber4ORCID,Raiman Michael3,Tung Roderick14ORCID

Affiliation:

1. The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.).

2. Tokyo Medical and Dental University, Department of Cardiovascular Medicine, Japan (T.N., S.M., M.G., T.S.).

3. Abbott Laboratories, Abbott Park, Illinois (N.S., M.R.).

4. The University of Arizona College of Medicine – Phoenix, Banner – University Medical Center, Phoenix (J.P.W., M.Z., R.B., D.Y.S., W.S., R.T.).

Abstract

BACKGROUND: The circuit boundaries for reentrant ventricular tachycardia (VT) have been historically conceptualized within a 2-dimensional (2D) construct, with their fixed or functional nature unresolved. This study aimed to examine the correlation between localized lines of conduction block (LOB) evident during baseline rhythm with lateral isthmus boundaries that 3-dimensionally constrain the VT isthmus as a hyperboloid structure. METHODS: A total of 175 VT activation maps were correlated with isochronal late activation maps during baseline rhythm in 106 patients who underwent catheter ablation for scar-related VT from 3 centers (42% nonischemic cardiomyopathy). An overt LOB was defined by a deceleration zone with split potentials (≥20 ms isoelectric segment) during baseline rhythm. A novel application of pacing within deceleration zone (≥600 ms) was implemented to unmask a concealed LOB not evident during baseline rhythm. LOB identified during baseline rhythm or pacing were correlated with isthmus boundaries during VT. RESULTS: Among 202 deceleration zones analyzed during baseline rhythm, an overt LOB was evident in 47%. When differential pacing was performed in 38 deceleration zones without overt LOB, an underlying concealed LOB was exposed in 84%. In 152 VT activation maps (2D=53, 3-dimensional [3D]=99), 69% of lateral boundaries colocalized with an LOB in 2D activation patterns, and the depth boundary during 3D VT colocalized with an LOB in 79%. In VT circuits with isthmus regions that colocalized with a U-shaped LOB (n=28), the boundary invariably served as both lateral boundaries in 2D and 3D. Overall, 74% of isthmus boundaries were identifiable as fixed LOB during baseline rhythm or differential pacing. CONCLUSIONS: The majority of VT circuit boundaries can be identified as fixed LOB from intrinsic or paced activation during sinus rhythm. Analysis of activation while pacing within the scar substrate is a novel technique that may unmask concealed LOB, previously interpreted to be functional in nature. An LOB from the perspective of a myocardial surface is frequently associated with intramural conduction, supporting the existence of a 3D hyperboloid VT circuit structure. Catheter ablation may be simplified to targeting both sides around an identified LOB during sinus rhythm.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3