Novel Small Leucine-Rich Repeat Protein Podocan Is a Negative Regulator of Migration and Proliferation of Smooth Muscle Cells, Modulates Neointima Formation, and Is Expressed in Human Atheroma

Author:

Hutter Randolph1,Huang Li1,Speidl Walter S.1,Giannarelli Chiara1,Trubin Paul1,Bauriedel Gerhard1,Klotman Mary E.1,Fuster Valentin1,Badimon Juan J.1,Klotman Paul E.1

Affiliation:

1. From the Departments of Medicine and Cardiology, Mount Sinai School of Medicine, New York, NY (R.H., L.H., W.S.S., C.G., P.T., V.F., J.J.B.); Department of Cardiology, Elisabeth Klinikum, Schmalkalden, Germany (G.B.); Department of Medicine, Duke University, Durham, NC (M.E.K.); and Department of Medicine, Baylor College of Medicine, Houston, TX (P.E.K.).

Abstract

Background— Smooth muscle cell (SMC) migration and proliferation critically influence the clinical course of vascular disease. We tested the effect of the novel small leucine-rich repeat protein podocan on SMC migration and proliferation using a podocan-deficient mouse in combination with a model of arterial injury and aortic explant SMC culture. In addition, we examined the effect of overexpression of the human form of podocan on human SMCs and tested for podocan expression in human atherosclerosis. In all these conditions, we concomitantly evaluated the Wnt-TCF (T-cell factor) pathway. Methods and Results— Podocan was strongly and selectively expressed in arteries of wild-type mice after injury. Podocan-deficient mice showed increased arterial lesion formation compared with wild-type littermates in response to injury ( P <0.05). Also, SMC proliferation was increased in arteries of podocan-deficient mice compared with wild-type ( P <0.05). In vitro, migration and proliferation were increased in podocan-deficient SMCs and were normalized by transfection with the wild-type podocan gene ( P <0.05). In addition, upregulation of the Wnt-TCF pathway was found in SMCs of podocan-deficient mice both in vitro and in vivo. On the other hand, podocan overexpression in human SMCs significantly reduced SMC migration and proliferation, inhibiting the Wnt-TCF pathway. Podocan and a Wnt-TCF pathway marker were differently expressed in human coronary restenotic versus primary lesions. Conclusions— Podocan appears to be a potent negative regulator of the migration and proliferation of both murine and human SMCs. The lack of podocan results in excessive arterial repair and prolonged SMC proliferation, which likely is mediated by the Wnt-TCF pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3