Targeting Platelets in Acute Experimental Stroke

Author:

Kleinschnitz Christoph1,Pozgajova Miroslava1,Pham Mirko1,Bendszus Martin1,Nieswandt Bernhard1,Stoll Guido1

Affiliation:

1. From the Departments of Neurology (C.K., G.S.), Clinical Biochemistry and Pathophysiology (M. Pozgajova, B.N.), and Neuroradiology (M. Pham, M.B.) and the Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine (M. Pozgajova, B.N.), University of Würzburg, Würzburg, Germany.

Abstract

Background— Ischemic stroke is a frequent and serious disease with limited treatment options. Platelets can adhere to hypoxic cerebral endothelial cells by binding of their glycoprotein (GP) Ib receptor to von Willebrand factor. Exposure of subendothelial matrix proteins further facilitates firm attachment of platelets to the vessel wall by binding of collagen to their GPVI receptor. In the present study, we addressed the pathogenic role of GPIb, GPVI, and the aggregation receptor GPIIb/IIIa in experimental stroke in mice. Methods and Results— Complete blockade of GPIbα was achieved by intravenous injection of 100 μg Fab fragments of the monoclonal antibody p0p/B to mice undergoing 1 hour of transient middle cerebral artery occlusion. At 24 hours after transient middle cerebral artery occlusion, cerebral infarct volumes were assessed by 2,3,5-triphenyltetrazolium chloride staining. In mice treated with anti-GPIbα Fab 1 hour before middle cerebral artery occlusion, ischemic lesions were reduced to ≈40% compared with controls (28.5±12.7 versus 73.9±17.4 mm 3 , respectively; P <0.001). Application of anti-GPIbα Fab 1 hour after middle cerebral artery occlusion likewise reduced brain infarct volumes (24.5±7.7 mm 3 ; P <0.001) and improved the neurological status. Similarly, depletion of GPVI significantly diminished the infarct volume but to a lesser extent (49.4±19.1 mm 3 ; P <0.05). Importantly, the disruption of early steps of platelet activation was not accompanied by an increase in bleeding complications as revealed by serial magnetic resonance imaging. In contrast, blockade of the final common pathway of platelet aggregation with anti-GPIIb/IIIa F(ab) 2 fragments had no positive effect on stroke size and functional outcome but increased the incidence of intracerebral hemorrhage and mortality after transient middle cerebral artery occlusion in a dose-dependent manner. Conclusions— Our data indicate that the selective blockade of key signaling pathways of platelet adhesion and aggregation has a different impact on stroke outcome and bleeding complications. Inhibition of early steps of platelet adhesion to the ischemic endothelium and the subendothelial matrix may offer a novel and safe treatment strategy in acute stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3