Estrogen Plays a Crucial Role in Rab9‐Dependent Mitochondrial Autophagy, Delaying Arterial Senescence

Author:

Sasaki Yuichi1,Ikeda Yoshiyuki1ORCID,Uchikado Yoshihiro1,Akasaki Yuichi1,Sadoshima Junichi2,Ohishi Mitsuru1

Affiliation:

1. Department of Cardiovascular Medicine and Hypertension Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima Japan

2. Department of Cell Biology and Molecular Medicine Rutgers New Jersey Medical School Newark NJ

Abstract

Background The risk of cardiovascular disease is known to increase after menopause. Mitochondria, which undergo quality control via mitochondrial autophagy, play a crucial role in the regulation of cellular senescence. The aim of this study was to investigate whether the effect of estrogen‐mediated protection from senescence on arteries is attributed to the induction of mitochondrial autophagy. Methods and Results We used human umbilical vein cells, vascular smooth muscle cells, and 12‐week‐old female C57BL/6 mice. The administration of 17β‐estradiol (E2) to cells inhibited cellular senescence and mitochondrial dysfunction. Furthermore, E2 increased mitochondrial autophagy, maintaining mitochondrial function, and retarding cellular senescence. Of note, E2 did not modulate LC3 (light chain 3), and ATG7 (autophagy related 7) deficiency did not suppress mitochondrial autophagy in E2‐treated cells. Conversely, E2 increased the colocalization of Rab9 with LAMP2 (lysosomal‐associated membrane protein 2) signals. The E2‐mediated effects on mitochondrial autophagy were abolished by the knockdown of either Ulk1 or Rab9. These results suggest that E2‐mediated mitochondrial autophagy is associated with Rab9‐dependent alternative autophagy. E2 upregulated SIRT1 (sirtuin 1) and activated LKB1 (liver kinase B1), AMPK (adenosine monophosphate‐activated protein kinase), and Ulk1, indicating that the effect of E2 on the induction of Rab9‐dependent alternative autophagy is mediated by the SIRT1/LKB1/AMPK/Ulk1 pathway. Compared with the sham‐operated mice, ovariectomized mice showed reduced mitochondrial autophagy and accelerated mitochondrial dysfunction and arterial senescence; these detrimental alterations were successfully rescued by the administration of E2. Conclusions We showed that E2‐induced mitochondrial autophagy plays a crucial role in the delay of vascular senescence. The Rab9‐dependent alternative autophagy is behind E2‐induced mitochondrial autophagy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3