Affiliation:
1. Department of Vascular Surgery Zhongshan Hospital Fudan University Shanghai China
2. Department of Ultrasound in Medicine Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
3. Department of Nephrology Zhongshan Hospital Fudan University Shanghai China
Abstract
Background
Integrin αM (CD11b), which is encoded by the Integrin Subunit Alpha M (ITGAM) gene, is not only a surface marker of monocytes but also an essential adhesion molecule. In this study, we investigated the effect of CD11b on experimental abdominal aortic aneurysm and the potential underlying mechanisms.
Methods and Results
The incidence of abdominal aortic aneurysm was not significantly lower in ITGAM(‐/‐) mice than in control mice. Nevertheless, knockout of CD11b reduced the maximum abdominal aortic diameter, macrophage infiltration, matrix metalloproteinase‐9 expression, and elastin and collagen degradation. Additionally, lower expression of IL‐6 was found in both the peripheral blood and abdominal aortas of ITGAM(‐/‐) mice, indicating a biological correlation between CD11b and the inflammatory response in abdominal aortic aneurysm. In vitro, the number of ITGAM(‐/‐) bone marrow–derived macrophages (BMDMs) that adhered to endothelial cells was significantly lower than the number of wild‐type BMDMs. Moreover, the CD11b monoclonal antibody and CD11b agonist leukadherin‐1 decreased and increased the number of adherent wild‐type BMDMs, respectively. Through RNA sequencing, genes associated with leukocyte transendothelial migration were found to be downregulated in ITGAM(‐/‐) BMDMs. Furthermore, immunoprecipitation–mass spectrometry analysis predicted that the Akt pathway might be responsible for the impaired transmigratory ability of ITGAM(‐/‐) BMDMs. The reduced activation of Akt was then confirmed, and the Akt agonist SC79 partially rescued the transendothelial migratory function of ITGAM(‐/‐) BMDMs.
Conclusions
CD11b might promote the development and progression of abdominal aortic aneurysm by mediating the endothelial cells adhesion and transendothelial migration of circulating monocytes/macrophages.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献