Glucose Metabolism in the Kidney: Neurohormonal Activation and Heart Failure Development

Author:

Gronda Edoardo1ORCID,Jessup Mariell2ORCID,Iacoviello Massimo3ORCID,Palazzuoli Alberto4,Napoli Claudio56ORCID

Affiliation:

1. Programma Cardiorenale U.O.C. Nefrologia Dialisi e Trapianto Renale dell’Adulto Dipartimento di Medicina e Specialità Mediche Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan Italy

2. American Heart Association Dallas TX

3. SC Cardiologia Dipartimento delle Scienze Mediche e Chirurgiche AOU Policlinico Riuniti di FoggiaUniversità degli Studi di Foggia Foggia Italy

4. Divisione di Malattie Cardiovascolari Dipartimento di Medicina Interna Università di Siena Italy

5. Clinical Department of Internal Medicine and Specialistics Department of Advanced Medical and Surgical Sciences Università della Campania "Luigi Vanvitelli" Naples Italy

6. IRCCS SDN Naples Italy

Abstract

Abstract The liver is not the exclusive site of glucose production in humans in the postabsorptive state. Robust data support that the kidney is capable of gluconeogenesis and studies have demonstrated that renal glucose production can increase systemic glucose production. The kidney has a role in maintaining glucose body balance, not only as an organ for gluconeogenesis but by using glucose as a metabolic substrate. The kidneys reabsorb filtered glucose through the sodium‐glucose cotransporters sodium‐glucose cotransporter (SGLT) 1 and SGLT2, which are localized on the brush border membrane of the early proximal tubule with immune detection of their expression in the tubularized Bowman capsule. In patients with diabetes mellitus, the renal maximum glucose reabsorptive capacity, and the threshold for glucose passage into the urine, are higher and contribute to the hyperglycemic state. The administration of SGLT2 inhibitors to patients with diabetes mellitus enhances sodium and glucose excretion, leading to a reduction of the glycosuria threshold and tubular maximal transport of glucose. The net effects of SGLT2 inhibition are to drive a reduction in plasma glucose levels, improving insulin secretion and sensitivity. The benefit of SGLT2 inhibitors goes beyond glycemic control, since inhibition of renal glucose reabsorption affects blood pressure and improves the hemodynamic profile and the tubule glomerular feedback. This action acts to rebalance the dense macula response by restoring adenosine production and restraining renin‐angiotensin‐aldosterone activation. By improving renal and cardiovascular function, we explain the impressive reduction in adverse outcomes associated with heart failure supporting the current clinical perspective.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3