Electrocardiographic Imaging of Repolarization Abnormalities

Author:

Bear Laura R.123ORCID,Cluitmans Matthijs4ORCID,Abell Emma123ORCID,Rogier Julien5,Labrousse Louis16,Cheng Leo K.7,LeGrice Ian7,Lever Nigel7,Sands Gregory B.7,Smaill Bruce7,Haïssaguerre Michel1238ORCID,Bernus Olivier123,Coronel Ruben19,Dubois Rémi123ORCID

Affiliation:

1. IHU‐LIRYCFondation Bordeaux Université Pessac France

2. CRCTB U1045 Université de Bordeaux Bordeaux France

3. Inserm U1045 CRCTB Pessac France

4. CARIM School for Cardiovascular Diseases Maastricht UMC Maastricht Netherlands

5. Organ Procurement Unit CHU Pessac France

6. Department of Cardiac Surgery CHU Pessac France

7. Auckland Bioengineering Institute University of Auckland Auckland New Zealand

8. Department of Cardiac Electrophysiology and Stimulation Bordeaux University Hospital (CHU) Pessac France

9. Department of Experimental Cardiology Academic Medical Center Amsterdam the Netherlands

Abstract

Background Dispersion and gradients in repolarization have been associated with life‐threatening arrhythmias, but are difficult to quantify precisely from surface electrocardiography. The objective of this study was to evaluate electrocardiographic imaging (ECGI) to noninvasively detect repolarization‐based abnormalities. Methods and Results Ex vivo data were obtained from Langendorff‐perfused pig hearts (n=8) and a human donor heart. Unipolar electrograms were recorded simultaneously during sinus rhythm from an epicardial sock and the torso‐shaped tank within which the heart was suspended. Regional repolarization heterogeneities were introduced through perfusion of dofetilide and pinacidil into separate perfusion beds. In vivo data included torso and epicardial potentials recorded simultaneously in anesthetized, closed‐chest pigs (n=5), during sinus rhythm, and ventricular pacing. For both data sets, ECGI accurately reconstructed T‐wave electrogram morphologies when compared with those recorded by the sock (ex vivo: correlation coefficient, 0.85 [0.52–0.96], in vivo: correlation coefficient, 0.86 [0.52–0.96]) and repolarization time maps (ex‐vivo: correlation coefficient, 0.73 [0.63–0.83], in vivo: correlation coefficient, 0.76 [0.67–0.82]). ECGI‐reconstructed repolarization time distributions were strongly correlated to those measured by the sock (both data sets, R 2 ≥0.92). Although the position of the gradient was slightly shifted by 8.3 (0–13.9) mm, the mean, max, and SD between ECGI and recorded gradient values were highly correlated ( R 2 =0.87, 0.75, and 0.86 respectively). There was no significant difference in ECGI accuracy between ex vivo and in vivo data. Conclusions ECGI reliably and accurately maps potentially critical repolarization abnormalities. This noninvasive approach allows imaging and quantifying individual parameters of abnormal repolarization‐based substrates in patients with arrhythmogenesis, to improve diagnosis and risk stratification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3