Tree‐Based Machine Learning to Identify and Understand Major Determinants for Stroke at the Neighborhood Level

Author:

Hu Liangyuan12ORCID,Liu Bian1,Ji Jiayi12,Li Yan13ORCID

Affiliation:

1. Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai New York NY

2. Institute for Health Care Delivery Science Icahn School of Medicine at Mount Sinai New York NY

3. Department of Obstetrics, Gynecology, and Reproductive Science Icahn School of Medicine at Mount Sinai New York NY

Abstract

Background Stroke is a major cardiovascular disease that causes significant health and economic burden in the United States. Neighborhood community‐based interventions have been shown to be both effective and cost‐effective in preventing cardiovascular disease. There is a dearth of robust studies identifying the key determinants of cardiovascular disease and the underlying effect mechanisms at the neighborhood level. We aim to contribute to the evidence base for neighborhood cardiovascular health research. Methods and Results We created a new neighborhood health data set at the census tract level by integrating 4 types of potential predictors, including unhealthy behaviors, prevention measures, sociodemographic factors, and environmental measures from multiple data sources. We used 4 tree‐based machine learning techniques to identify the most critical neighborhood‐level factors in predicting the neighborhood‐level prevalence of stroke, and compared their predictive performance for variable selection. We further quantified the effects of the identified determinants on stroke prevalence using a Bayesian linear regression model. Of the 5 most important predictors identified by our method, higher prevalence of low physical activity, larger share of older adults, higher percentage of non‐Hispanic Black people, and higher ozone levels were associated with higher prevalence of stroke at the neighborhood level. Higher median household income was linked to lower prevalence. The most important interaction term showed an exacerbated adverse effect of aging and low physical activity on the neighborhood‐level prevalence of stroke. Conclusions Tree‐based machine learning provides insights into underlying drivers of neighborhood cardiovascular health by discovering the most important determinants from a wide range of factors in an agnostic, data‐driven, and reproducible way. The identified major determinants and the interactive mechanism can be used to prioritize and allocate resources to optimize community‐level interventions for stroke prevention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference37 articles.

1. Heart disease and stroke statistics—2020 update;Virani Salim S;Circulation,2020

2. An evidence-based appraisal of global association between air pollution and risk of stroke

3. Heart disease and stroke statistics—2014 update: a report from the American Heart Association;Go AS;Circulation,2014

4. Interventions for improving modifiable risk factor control in the secondary prevention of stroke;Bridgwood B;Cochrane Database Syst Rev,2018

5. Stroke Risk Factors, Genetics, and Prevention

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3