Prohibitin‐1 Is a Dynamically Regulated Blood Protein With Cardioprotective Effects in Sepsis

Author:

Mattox Taylor A.1,Psaltis Christine1ORCID,Weihbrecht Katie2,Robidoux Jacques1ORCID,Kilburg‐Basnyat Brita1ORCID,Murphy Michael P.3,Gowdy Kymberly M.1ORCID,Anderson Ethan J.42ORCID

Affiliation:

1. Department of Pharmacology & Toxicology Brody School of MedicineEast Carolina University Greenville NC

2. Fraternal Order of Eagles Diabetes Research Center University of Iowa Iowa City IA

3. Medical Research Council Mitochondrial Biology Unit University of Cambridge United Kingdom

4. Department of Pharmaceutical Sciences & Experimental Therapeutics College of Pharmacy Iowa City IA

Abstract

Background In sepsis, circulating cytokines and lipopolysaccharide elicit mitochondrial dysfunction and cardiomyopathy, a major cause of morbidity and mortality with this condition. Emerging research places the PHB1 (lipid raft protein prohibitin‐1) at the nexus of inflammation, metabolism, and oxidative stress. PHB1 has also been reported in circulation, though its function in this compartment is completely unknown. Methods and Results Using a wide‐ranging approach across multiple in vitro and in vivo models, we interrogated the functional role of intracellular and circulating PHB1 in the heart during sepsis, and elucidated some of the mechanisms involved. Upon endotoxin challenge or sepsis induction in rodent models, PHB1 translocates from mitochondria to nucleus in cardiomyocytes and is secreted into the circulation from the liver in a manner dependent on nuclear factor (erythroid‐derived 2)‐like 2, a key transcriptional regulator of the antioxidant response. Overexpression or treatment with recombinant human PHB1 enhances the antioxidant/anti‐inflammatory response and protects HL‐1 cardiomyocytes from mitochondrial dysfunction and toxicity from cytokine stress. Importantly, administration of recombinant human PHB1 blunted inflammation and restored cardiac contractility and ATP production in mice following lipopolysaccharide challenge. This cardioprotective, anti‐inflammatory effect of recombinant human PHB1 was determined to be independent of nuclear factor (erythroid‐derived 2)‐like 2, but partially dependent on PI3K/AKT  signaling in the heart. Conclusions These findings reveal a previously unknown cardioprotective effect of PHB1 during sepsis, and illustrate a pro‐survival, protective role for PHB1 in the circulation. Exploitation of circulating PHB1 as a biomarker and/or therapeutic could have widespread benefit in the clinical management of sepsis and other severe inflammatory disorders.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3