Spectrum of Apolipoprotein AI and Apolipoprotein AII Proteoforms and Their Associations With Indices of Cardiometabolic Health: The CARDIA Study

Author:

Wilkins John T.1ORCID,Seckler Henrique S.2,Rink Jonathan3ORCID,Compton Philip D.2,Fornelli Luca4ORCID,Thaxton C. Shad3,LeDuc Rich2ORCID,Jacobs David5ORCID,Doubleday Peter F.2,Sniderman Allan6ORCID,Lloyd‐Jones Donald M.1ORCID,Kelleher Neil L.2

Affiliation:

1. Department of Medicine (Cardiology) and Department of Preventive Medicine Northwestern University Chicago IL

2. Department of Chemistry Chemistry of Life Processes Institute and Proteomics Center of Excellence Northwestern University Evanston IL

3. Department of Medicine (Urology) Northwestern University Chicago IL

4. Department of Molecular Biology University of Oklahoma Norman OK

5. Division of Epidemiology and Community Health School of Public Health University of Minnesota Minneapolis MN

6. Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention Department of Medicine McGill University Health Centre Montreal Quebec Canada

Abstract

Background ApoAI (apolipoproteins AI) and apoAII (apolipoprotein AII) are structural and functional proteins of high‐density lipoproteins (HDL) which undergo post‐translational modifications at specific residues, creating distinct proteoforms. While specific post‐translational modifications have been reported to alter apolipoprotein function, the full spectrum of apoAI and apoAII proteoforms and their associations with cardiometabolic phenotype remains unknown. Herein, we comprehensively characterize apoAI and apoAII proteoforms detectable in serum and their post‐translational modifications and quantify their associations with cardiometabolic health indices. Methods and Results Using top‐down proteomics (mass‐spectrometric analysis of intact proteins), we analyzed paired serum samples from 150 CARDIA (Coronary Artery Risk Development in Young Adults) study participants from year 20 and 25 exams. Measuring 15 apoAI and 9 apoAII proteoforms, 6 of which carried novel post‐translational modifications, we quantified associations between percent proteoform abundance and key cardiometabolic indices. Canonical (unmodified) apoAI had inverse associations with HDL cholesterol and HDL‐cholesterol efflux, and positive associations with obesity indices (body mass index, waist circumference), and triglycerides, whereas glycated apoAI showed positive associations with serum glucose and diabetes mellitus. Fatty‐acid‒modified ApoAI proteoforms had positive associations with HDL cholesterol and efflux, and inverse associations with obesity indices and triglycerides. Truncated and dimerized proteoforms of apoAII were associated with HDL cholesterol (positively) and obesity indices (inversely). Several proteoforms had no significant associations with phenotype. Conclusions Associations between apoAI and AII and cardiometabolic indices are proteoform‐specific. These results provide “proof‐of‐concept” that precise chemical characterization of human apolipoproteins will yield improved insights into the complex pathways through which proteins signify and mediate health and disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3