Antenatal Hypoxia Affects Pulmonary Artery Contractile Functions via Downregulating L‐type Ca 2+ Channels Subunit Alpha1 C in Adult Male Offspring

Author:

Li Huan1,Ji Bingyu1,Xu Ting1,Zhao Meng1,Zhang Yingying1,Sun Miao1,Xu Zhice1,Gao Qinqin1ORCID

Affiliation:

1. From the Institute for Fetology First Hospital of Soochow University Suzhou China

Abstract

Background Antenatal intrauterine fetal hypoxia is a common pregnancy complication that has profound adverse effects on an individual's vascular health later in life. Pulmonary arteries are sensitive to hypoxia, but adverse effects of antenatal hypoxia on pulmonary vasoreactivities in the offspring remain unknown. This study aimed to determine the effects and related mechanisms of antenatal hypoxia on pulmonary artery functions in adult male offspring. Methods and Results Pregnant Sprague‐Dawley rats were housed in a normoxic or hypoxic (10.5% O 2 ) chamber from gestation days 10 to 20. Male offspring were euthanized at 16 weeks old (adult offspring). Pulmonary arteries were collected for vascular function, electrophysiology, target gene expression, and promoter methylation studies. In pulmonary artery rings, contractions to serotonin hydrochloride, angiotensin II, or phenylephrine were reduced in the antenatal hypoxic offspring, which resulted from inactivated L‐type Ca 2+ channels. In pulmonary artery smooth muscle cells, the basal whole‐cell Ca 2+ currents, as well as vasoconstrictor‐induced Ca 2+ transients were significantly reduced in antenatal hypoxic offspring. In addition, increased promoter methylations within L‐type Ca 2+ channel subunit alpha1 C were compatible with its reduced expressions. Conclusions This study indicated that antenatal hypoxia programmed long‐lasting vascular hypocontractility in the male offspring that is linked to decreases of L‐type Ca 2+ channel subunit alpha1 C in the pulmonary arteries. Antenatal hypoxia resulted in pulmonary artery adverse outcomes in postnatal offspring, was strongly associated with reprogrammed L‐type Ca 2+ channel subunit alpha1 C expression via a DNA methylation‐mediated epigenetic mechanism, advancing understanding toward the effect of antenatal hypoxia in early life on long‐term vascular health.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3