Diazoxide Maintains Human Myocyte Volume Homeostasis During Stress

Author:

Maffit Sara K.1,Sellitto Angela D.1,Al‐Dadah Ashraf S.1,Schuessler Richard B.1,Damiano Ralph J.1,Lawton Jennifer S.1

Affiliation:

1. From the Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO

Abstract

Background Exposure to hypothermic hyperkalemic cardioplegia, hyposmotic stress, or metabolic inhibition results in significant animal myocyte swelling (6% to10%) and subsequent reduced contractility (10% to 20%). Both are eliminated by the adenosine triphosphate‐sensitive potassium channel opener diazoxide (DZX). The relationship between swelling and reduced contractility suggests that the structural change may represent one mechanism of postoperative myocardial stunning. This study evaluated human myocyte volume during stress to investigate if similar phenomena exist in human myocytes. Methods and Results Human atrial myocytes isolated from tissue obtained during cardiac surgery were perfused with Tyrode's physiological solution (20 minutes, 37°C), test solution (20 minutes), and Tyrode's (37°C, 20 minutes). Test solutions ( n =6 to 12 myocytes each) included Tyrode's (37°C or 9°C), Tyrode's+DZX (9°C), hyperkalemic cardioplegia (9°C)±DZX, cardioplegia+DZX+HMR 1098 (sarcolemmal adenosine triphosphate‐sensitive potassium channel inhibitor, 9°C), cardioplegia+DZX+5‐hydroxydeconoate (mitochondrial adenosine triphosphate‐sensitive potassium channel inhibitor, 9°C), mild hyposmotic solution±DZX, metabolic inhibition±DZX, and metabolic inhibition+DZX+5‐hydroxydeconoate. Myocyte volume was recorded every 5 minutes. Exposure to hypothermic hyperkalemic cardioplegia, hyposmotic stress, or metabolic inhibition resulted in significant human myocyte swelling (8%, 7%, and 6%, respectively; all P <0.05 vs control). In all groups, the swelling was eliminated or lessened by DZX. The addition of channel inhibitors did not significantly alter results. Conclusions DZX maintains human myocyte volume homeostasis during stress via an unknown mechanism. DZX may prove to be clinically useful following the elucidation of its specific mechanism of action. ( J Am Heart Assoc . 2012;1:jah3‐e000778 doi : 10.1161/JAHA.112.000778 .)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3