Phosphoinositide 3-Kinase p110α Is a Master Regulator of Exercise-Induced Cardioprotection and PI3K Gene Therapy Rescues Cardiac Dysfunction

Author:

Weeks Kate L.1,Gao Xiaoming1,Du Xiao-Jun1,Boey Esther J.H.1,Matsumoto Aya1,Bernardo Bianca C.1,Kiriazis Helen1,Cemerlang Nelly1,Tan Joon Win1,Tham Yow Keat1,Franke Thomas F.1,Qian Hongwei1,Bogoyevitch Marie A.1,Woodcock Elizabeth A.1,Febbraio Mark A.1,Gregorevic Paul1,McMullen Julie R.1

Affiliation:

1. From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,...

Abstract

Background— Numerous molecular and biochemical changes have been linked with the cardioprotective effects of exercise, including increases in antioxidant enzymes, heat shock proteins, and regulators of cardiac myocyte proliferation. However, a master regulator of exercise-induced protection has yet to be identified. Here, we assess whether phosphoinositide 3-kinase (PI3K) p110α is essential for mediating exercise-induced cardioprotection, and if so, whether its activation independent of exercise can restore function of the failing heart. Methods and Results— Cardiac-specific transgenic (Tg) mice with elevated or reduced PI3K(p110α) activity (constitutively active PI3K [caPI3K] and dominant negative PI3K, respectively) and non-Tg controls were subjected to 4 weeks of exercise training followed by 1 week of pressure overload (aortic-banding) to induce pathological remodeling. Aortic-banding in untrained non-Tg controls led to pathological cardiac hypertrophy, depressed systolic function, and lung congestion. This phenotype was attenuated in non-Tg controls that had undergone exercise before aortic-banding. Banded caPI3K mice were protected from pathological remodeling independent of exercise status, whereas exercise provided no protection in banded dominant negative PI3K mice, suggesting that PI3K is necessary for exercise-induced cardioprotection. Tg overexpression of heat shock protein 70 could not rescue the phenotype of banded dominant negative PI3K mice, and deletion of heat shock protein 70 from banded caPI3K mice had no effect. Next, we used a gene therapy approach (recombinant adeno-associated viral vector 6) to deliver caPI3K expression cassettes to hearts of mice with established cardiac dysfunction caused by aortic-banding. Mice treated with recombinant adeno-associated viral 6-caPI3K vectors had improved heart function after 10 weeks. Conclusions— PI3K(p110α) is essential for exercise-induced cardioprotection and delivery of caPI3K vector can improve function of the failing heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3