Multiparametric Implantable Cardioverter-Defibrillator Algorithm for Heart Failure Risk Stratification and Management: An Analysis in Clinical Practice

Author:

Calò Leonardo1ORCID,Bianchi Valter2ORCID,Ferraioli Donatella3,Santini Luca4,Dello Russo Antonio5,Carriere Cosimo6,Santobuono Vincenzo Ezio7ORCID,Andreoli Chiara8ORCID,La Greca Carmelo9,Arena Giuseppe10ORCID,Talarico Antonello11,Pisanò Ennio12ORCID,Santoro Amato13ORCID,Giammaria Massimo14ORCID,Ziacchi Matteo15,Viscusi Miguel16,De Ruvo Ermenegildo1,Campari Monica17,Valsecchi Sergio17ORCID,D’Onofrio Antonio2,Minati M,Tota C,Martino A,Tavoletta V,Manzo M,Ammirati F,Mahfouz K,Colaiaco C,Guerra F,Zorzin Fantasia A,Amato V,Savarese G,Pellegrini D,Pimpinicchio L,Pecora D,Bartoli C,Borrello V.M,Ratti M,De Rosa F,Quirino F,Tomaselli C,Marino E,Baiocchi C,De Vivo O,Baccani B,Amellone C,Lucciola M.T,Angeletti A,Frisoni J,Brignoli M,Costa A,Pangallo A,Benedetto F,Pepi P,Nicolis D,Petracci B,Giubilato G,Carbonardi L,Porcelli D,Romani B,Zuccaro L.M.

Affiliation:

1. Cardiology Department, Policlinico Casilino, Rome, Italy (L.C., E.D.R.).

2. Unità Operativa di Elettrofisiologia, Studio e Terapia delle Aritmie,” Monaldi Hospital, Naples, Italy (V.B., A.D.).

3. Cardiology Department, OO.RR. San Giovanni di Dio Ruggi d’Aragona, Salerno, Italy (D.F.).

4. Cardiology Department, “Giovan Battista Grassi” Hospital, Rome, Italy (L.S.).

5. Clinica di Cardiologia e Aritmologia, Università Politecnica delle Marche, “Ospedali Riuniti,” Ancona, Italy (A.D.R.).

6. Cardiology Department, Azienda Ospedaliera Universitaria Ospedali Riuniti di Trieste – Cattinara, Trieste, Italy (C.C.).

7. Cardiology Department, University of Bari, Policlinico di Bari, Italy (V.E.S.).

8. Cardiology Department, S. Giovanni Battista Hospital, Foligno, Italy (C.A.).

9. Cardiology Department, Fondazione Poliambulanza, Brescia, Italy (C.L.G.).

10. Cardiology Department, Ospedale Civile Apuane, Massa, Italy (G.A.).

11. Cardiology Department, SS. Annunziata Hospital, Cosenza, Italy (A.T.).

12. Cardiology Department, Vito Fazzi Hospital, Lecce, Italy (E.P.).

13. Cardiology Department, Azienda Ospedaliera Universitaria Senese, Policlinico Santa Maria alle Scotte, Siena, Italy (A.S.).

14. Division of Cardiology, Maria Vittoria Hospital, Turin, Italy (M.G.).

15. Institute of Cardiology, University of Bologna, S.Orsola-Malpighi University Hospital, Italy (M.Z.).

16. Cardiology Department, S. Anna e S. Sebastiano Hospital, Caserta, Italy (M.V.).

17. Rhythm Management Department, Boston Scientific Italia, Milan, Italy (M.C., S.V.).

Abstract

Background: The HeartLogic algorithm combines multiple implantable cardioverter-defibrillator sensors to identify patients at risk of heart failure (HF) events. We sought to evaluate the risk stratification ability of this algorithm in clinical practice. We also analyzed the alert management strategies adopted in the study group and their association with the occurrence of HF events. Methods: The HeartLogic feature was activated in 366 implantable cardioverter-defibrillator and cardiac resynchronization therapy implantable cardioverter-defibrillator patients at 22 centers. The median follow-up was 11 months [25th–75th percentile: 6–16]. The HeartLogic algorithm calculates a daily HF index and identifies periods IN alert state on the basis of a configurable threshold. Results: The HeartLogic index crossed the threshold value 273 times (0.76 alerts/patient-year) in 150 patients. The time IN alert state was 11% of the total observation period. Patients experienced 36 HF hospitalizations, and 8 patients died of HF during the observation period. Thirty-five events were associated with the IN alert state (0.92 events/patient-year versus 0.03 events/patient-year in the OUT of alert state). The hazard ratio in the IN/OUT of alert state comparison was (hazard ratio, 24.53 [95% CI, 8.55–70.38], P <0.001), after adjustment for baseline clinical confounders. Alerts followed by clinical actions were associated with less HF events (hazard ratio, 0.37 [95% CI, 0.14–0.99], P =0.047). No differences in event rates were observed between in-office and remote alert management. Conclusions: This multiparametric algorithm identifies patients during periods of significantly increased risk of HF events. The rate of HF events seemed lower when clinical actions were undertaken in response to alerts. Extra in-office visits did not seem to be required to effectively manage HeartLogic alerts. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02275637.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3