A Bioengineered Hydrogel System Enables Targeted and Sustained Intramyocardial Delivery of Neuregulin, Activating the Cardiomyocyte Cell Cycle and Enhancing Ventricular Function in a Murine Model of Ischemic Cardiomyopathy

Author:

Cohen Jeffrey E.1,Purcell Brendan P.1,MacArthur John W.1,Mu Anbin1,Shudo Yasuhiro1,Patel Jay B.1,Brusalis Christopher M.1,Trubelja Alen1,Fairman Alexander S.1,Edwards Bryan B.1,Davis Mollie S.1,Hung George1,Hiesinger William1,Atluri Pavan1,Margulies Kenneth B.1,Burdick Jason A.1,Woo Y. Joseph1

Affiliation:

1. From the Department of Cardiothoracic Surgery, Stanford University, CA (J.E.C., J.W.M., Y.S., J.B.P., B.B.E., Y.J.W.); and Departments of Surgery, Division of Cardiovascular Surgery (J.E.C., J.W.M., C.M.B., A.T., A.S.F., G.H., W.H., P.A.), Bioengineering (B.P.P., M.S.D., J.A.B.), and Cardiology (A.M., K.B.M.), University of Pennsylvania, Philadelphia.

Abstract

Background— Neuregulin-1β (NRG) is a member of the epidermal growth factor family possessing a critical role in cardiomyocyte development and proliferation. Systemic administration of NRG demonstrated efficacy in cardiomyopathy animal models, leading to clinical trials using daily NRG infusions. This approach is hindered by requiring daily infusions and off-target exposure. Therefore, this study aimed to encapsulate NRG in a hydrogel to be directly delivered to the myocardium, accomplishing sustained localized NRG delivery. Methods and Results— NRG was encapsulated in hydrogel, and release over 14 days was confirmed by ELISA in vitro. Sprague-Dawley rats were used for cardiomyocyte isolation. Cells were stimulated by PBS, NRG, hydrogel, or NRG-hydrogel (NRG-HG) and evaluated for proliferation. Cardiomyocytes demonstrated EdU (5-ethynyl-2'-deoxyuridine) and phosphorylated histone H3 positivity in the NRG-HG group only. For in vivo studies, 2-month-old mice (n=60) underwent left anterior descending coronary artery ligation and were randomized to the 4 treatment groups mentioned. Only NRG-HG–treated mice demonstrated phosphorylated histone H3 and Ki67 positivity along with decreased caspase-3 activity compared with all controls. NRG was detected in myocardium 6 days after injection without evidence of off-target exposure in NRG-HG animals. At 2 weeks, the NRG-HG group exhibited enhanced left ventricular ejection fraction, decreased left ventricular area, and augmented borderzone thickness. Conclusions— Targeted and sustained delivery of NRG directly to the myocardial borderzone augments cardiomyocyte mitotic activity, decreases apoptosis, and greatly enhances left ventricular function in a model of ischemic cardiomyopathy. This novel approach to NRG administration avoids off-target exposure and represents a clinically translatable strategy in myocardial regenerative therapeutics.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3