Small Endogeneous Peptide Mitigates Myocardial Remodeling in a Mouse Model of Cardioselective Galectin-3 Overexpression

Author:

Sonkawade Swati D.1,Pokharel Saraswati2,Karthikeyan Badri1,Kim Minhyung3,Xu Shirley12,KC Kristi2,Sexton Sandra4,Catalfamo Kayla5,Spernyak Joseph A.6,Sharma Umesh C.1ORCID

Affiliation:

1. Division of Cardiology, Department of Medicine, Jacob’s School of Medicine and Biomedical Sciences, Buffalo, NY (S.D.S., B.K., S.X., U.C.S.).

2. Division of Thoracic Pathology and Oncology, Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY. (S.P., S.X., K.K.C.)

3. Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY. (M.K.)

4. Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY. (S.S.)

5. Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY. (K.C.)

6. Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY. (J.A.S.)

Abstract

Background: Myocardial Gal3 (galectin-3) expression is associated with cardiac inflammation and fibrosis. Increased Gal3 portends susceptibility to heart failure and death. There are no data reporting the causative role of Gal3 to mediate cardiac fibro-inflammatory response and heart failure. Methods: We developed a cardioselective Gal3 gain-of-function mouse ( Gal3+/+ ) using α-myosin heavy chain promotor. We confirmed Gal3-transgene expression with real-time polymerase chain reaction and quantified cardiac/circulating Gal3 with Western blot and immunoassays. We used echocardiogram and cardiac magnetic resonance imaging to measure cardiac volumes, function, and myocardial velocities. Ex vivo, we studied myocardial inflammation/fibrosis and downstream TGF (transforming growth factor) β1-mRNA expression. We examined the effects of acute myocardial ischemia in presence of excess Gal3 by inducing acute myocardial infarction in mice. Two subsets of mice including mice treated with N-acetyl-seryl-aspartyl-lysyl-proline (a Gal3-inhibitor) and mice with genetic Gal3 loss-of-function ( Gal3 −/−) were studied for comparative analysis of Gal3 function. Results: Gal3+/+ mice had increased cardiac/circulating Gal3. Gal3+/+ mice showed excess pericardial fat pad, dilated ventricles and cardiac dysfunction, which was partly normalized by N-acetyl-seryl-aspartyl-lysyl-proline. Cardiac magnetic resonance imaging showed reduced myocardial contractile velocities in Gal3+/+ . The majority of Gal3+/+ mice did not survive acute myocardial infarction, and the survivors had profound cardiac dysfunction. Myocardial histology of Gal3+/+ mice showed macrophage/mast-cell infiltration, fibrosis and higher TGFβ1-mRNA expression, which were mitigated by both Gal3 gene deletion and N-acetyl-seryl-aspartyl-lysyl-proline administration. Conclusions: Our study shows that cardioselective Gal3 overexpression leads to multiple cardiac phenotypic defects including ventricular dilation and cardiac dysfunction. Pharmacological Gal3 inhibition conferred protective effects with reduction of inflammation and fibrosis. Our study highlights the importance of translational studies to counteract Gal3 function and prevent cardiac dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3