Protease-Activated Receptor-2 Involvement in Hypotension in Normal and Endotoxemic Rats In Vivo

Author:

Cicala Carla1,Pinto Aldo1,Bucci Mariarosaria1,Sorrentino Raffaella1,Walker Brian1,Harriot Patrick1,Cruchley Alan1,Kapas Supriya1,Howells Gareth L.1,Cirino Giuseppe1

Affiliation:

1. From the Dipartimento di Farmacologia Sperimentale, Naples, Italy (C.C., M.B., R.S., G.C.); Dipartimento di Scienze Farmaceutiche, Penta (Sa), Italy (A.P.); the School of Biology and Biochemistry, Queen’s University of Belfast, Medical Biology Centre, Belfast, UK (B.W., P.H.); and Clinical Sciences Research Centre, St Bartholomew’s, and the Royal London School of Medicine and Dentistry, London, UK (A.C., S.K., G.L.H.).

Abstract

Background —The protease-activated receptor-2 (PAR-2) is expressed by vascular endothelial cells and upregulated by lipopolysaccharide (LPS) in vitro. PAR-2 is activated by a tethered ligand created after proteolytic cleavage by trypsin or experimentally by a synthetic agonist peptide (PAR-2AP) corresponding to the new amino terminus of the tethered ligand. Methods and Results —Intravenous administration of PAR-2AP (0.1, 0.3, and 1 mg/kg) to rats caused a dose-dependent hypotension. A scrambled peptide was without effect. A specific trypsin inhibitor, biotin–SGKR-chloromethylketone, inhibited trypsin-induced hypotension but not that stimulated by PAR-2AP. In animals treated with LPS 20 hours earlier, we found an increased sensitivity to trypsin and PAR-2AP in the hypotensive response. In particular, PAR-2AP caused hypotension at a low concentration of 30 ng/kg. Moreover, PAR-2 was immunolocalized to endothelial and smooth muscle cells in aorta and jugular vein in LPS-treated rats, and increased levels of PAR-2 mRNA were shown by reverse transcription–polymerase chain reaction analysis. Conclusions —Our findings suggest that PAR-2 is important in the regulation of blood pressure in vivo. A functional upregulation of PAR-2 by LPS was demonstrated by the activity of concentrations of PAR-2AP that were inactive in normal animals. We conclude that PAR-2 may play an important role in the hypotension associated with endotoxic shock and may represent a new therapeutic target.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3