Coupling Between Myosin ATPase Cycle and Creatine Kinase Cycle Facilitates Cardiac Actomyosin Sliding In Vitro

Author:

Sata Masataka1,Sugiura Seiryo1,Yamashita Hiroshi1,Momomura Shin-ichi1,Serizawa Takashi1

Affiliation:

1. From the Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan.

Abstract

Background There is much evidence to support the favorable effects of the phosphocreatine shuttle on myocardial contraction and relaxation. However, experiments in which cardiac muscle fiber or myofibril was used have not elucidated its precise mechanism. Methods and Results Active movements of fluorescently labeled actin filaments on a cardiac myosin layer coimmobilized with creatine kinase (CK) onto a nitrocellulose-coated glass coverslip were studied under various concentrations of adenine nucleotides. At a constant phosphocreatine concentration (5 mmol/L, pH 7.1), the relation of sliding velocity to MgATP concentration followed Michaelis-Menten kinetics. The apparent K m was significantly smaller in the presence of CK (0.041±0.001 mmol/L) than in the absence of CK (0.080±0.001 mmol/L), indicating that coattached CK facilitated the propelling of actin filaments by the myosin ATPase. This phenomenon was also seen under acidic conditions (pH 6.7) as well as in the presence of inorganic phosphate (10 mmol/L). At a constant MgATP concentration (1 mmol/L), the inhibitory effect of MgADP on the actin-myosin interaction was weaker in the presence of CK than in the absence of CK. Another ATP-regenerating system, pyruvate kinase and phospho(enol)pyruvate, while maintaining a low ratio of [MgADP] to [MgATP], did not reduce the K m value (0.156±0.001 mmol/L), suggesting that the effect of coattached CK was not achieved only by prevention of MgADP accumulation. Conclusions Coupling between the ATPase cycle and the CK cycle may serve not only to maintain the ATP concentration within the myofibril but also to provide optimal conditions for cardiac actomyosin interaction. Consideration of this coupling will offer a clue to elucidating the systolic or diastolic dysfunction during myocardial ischemia or reperfusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3