Superficial Accumulation of Plasminogen During Plasma Clot Lysis

Author:

Sakharov Dmitry V.1,Rijken Dingeman C.1

Affiliation:

1. From Gaubius Laboratory, TNO-PG, Leiden, Netherlands.

Abstract

Background Binding of plasminogen to partially degraded fibrin is an important step in fibrinolysis, influencing its rate and fibrin specificity. Little is known about the spatial distribution of plasminogen and of plasminogen-binding sites inside thrombi during lysis. In the present study, we investigated this problem, which is important for a better understanding of the local regulation of fibrinolysis and the rate-limiting factors of therapeutic thrombolysis. Methods and Results An experimental system was used that allowed continuous visualization and quantification by fluorescence microscopy of the spatial distribution of fluorescein-labeled plasminogen inside and outside model thrombi. Strong superficial accumulation of plasminogen was observed during lysis of a plasma clot induced by tissue-type or urokinase-type plasminogen activators in the surrounding plasma. A distinctly visible plasminogen-accumulating shell moved continuously with the reducing surface of the clot. The accumulation decreased in conditions of exhaustive activation of plasminogen in the outer plasma. It was found in a purified system that a thin superficial layer (≈50 μm wide) of a plasmin-treated fibrin clot exposes about 2.5 plasminogen-binding sites per fibrin monomer with a K d of 2.2 μmol/L. At a physiological concentration of plasminogen (1.5 μmol/L) in the outer medium, plasminogen was concentrated about 10-fold in this layer. The binding was dose-dependently inhibited by ε-aminocaproic acid. Conclusions We conclude that the generation of potent surface-associated plasminogen-binding sites during thrombolysis results in a strikingly high plasminogen concentration at the dynamically changing surface of a lysing clot. The necessity of a continuous plasminogen supply from the plasma supports the use of fibrin-specific and plasminogen-sparing agents for thrombolytic therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3