Ischemic Preconditioning at a Distance

Author:

Birnbaum Yochai1,Hale Sharon L.1,Kloner Robert A.1

Affiliation:

1. From the Heart Institute, Good Samaritan Hospital, and the University of Southern California, Los Angeles.

Abstract

Background Limitation of myocardial infarct size by an earlier brief complete occlusion of a coronary artery is defined as ischemic preconditioning. However, myocardial protection also can be achieved by partial reduction of coronary flow, rapid cardiac pacing, or brief ischemia-reperfusion of a remote region of the heart. Our study assesses the effect on myocardial infarct size of preconditioning at a distance induced by partial reduction of blood flow to a hind limb with or without increase of demand by electrical stimulation of a skeletal muscle. Methods and Results Anesthetized rabbits were randomized to 30 minutes of waiting period (controls), 55% to 65% reduction of femoral artery blood flow (stenosis), electrical stimulation of the gastrocnemius muscle at a rate of one per second (stimulation), or stenosis+stimulation. Thereafter, rabbits underwent 30 minutes of coronary artery occlusion and 4 hours of reperfusion. Each group included 8 rabbits. Risk zones were comparable among groups. However, the ratio of infarct size to risk zone was smaller in the stenosis+stimulation group (0.09±0.02) compared with the control (0.26±0.03), stenosis (0.36±0.05), and stimulation (0.30±0.05) groups ( P =.0006). ANCOVA performed on the fraction of infarction (infarct size/left ventricular weight) and the fraction of risk zone revealed a significant group effect ( P =.0004). Conclusions Remote ischemia of a skeletal muscle induced by muscle stimulation combined with restriction of blood flow preconditioned the myocardium. The combination of muscle stimulation with reduction of femoral arterial blood flow but not muscle stimulation without blood flow restriction or of flow restriction without muscle stimulation reduced myocardial infarct size considerably.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3